Research Report

Macaulay dual generators of complete intersection ideals
defined by complete homogeneous symmetric polynomials

of successive degrees

Satoru ISOGAWA "

In this paper, we describe the contraction-annihilated Macaulay dual generators for complete intersection ideals defined
by complete homogeneous symmetric polynomials of successive degrees. We also provide the first syzygy of the associated
graded ring of each of these complete intersections with respect to the last variable. Using this, we prove that each of these
complete intersections possesses the strong Lefschetz property, provided that the coefficient field of the polynomial ring has
characteristic 0.
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1. Introduction
Let R=K][x,-,x,] beapolynomial ring in n variables over a field K, m the graded maximal ideal of R,and [

a m -primary homogeneous ideal of R with the standard grading, i.e., degx,=1 for i=1,---,n,andlet A=R/I.

Definition 1.1. We say that A=P 4, has the strong Lefschetz property (SLP) if there exists a linear form ye 4 such that the

i=0
multiplication map xy*:4,— A,., has full rank forall 1<d<c¢ and 0<i<c-d.

The long-standing conjecture that every Artinian complete intersection should have the SLP has been studied by many authors but
here we list only two survey papers (1) and (2) as references.

In this paper, we focus on a complete intersection ideal / defined by complete homogeneous symmetric polynomials of successive
degrees, and let A=R/1I .
In Section 2, we provide a first syzygy of the associated graded module G~ (A) with respect to the last variable z=x,. Using

this, we give a proof that 4 has the SLP if K is a field of characteristic 0.
In Section 3, we present a contraction annihilated Macaulay dual generator of A4 and GZ(A) , which is effective for any
characteristic of the coefficient field K , although the differential version is already known in characteristic 0 case (Example 2.87 in

1)

2. Associated graded module with respect to the last variable

2.1 Preliminary
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Let R'=K[x,,x,,]cR=K[x,,x,]=R[x,] be a polynomial subalgebra of R in first n—1 variables. We often
denote the last variable z=x,. Z,Z,,, Z_denote the set of integers, non-negative integers, non-positive integers
respectively. We sometimes use the multi-index notation for a monomial x“ =x“---x,“ € R and denote degx® =|a|=a, +---+aq,,

where o =(a,,,a,)eZ,.

Notation 2.1.1. We assume that »n>2 , where n is the number of variables.

(1) h(a)=h,(a)= z x“€R the complete homogeneous symmetric polynomial of degree @ in n variables

la|=a
for a=1,2,--, h(O)zhn(O):l and it is convenient to define h(a)zhn(a):o for a<0.

(2) W(a)=h(a)= Z x* eR' the complete homogeneous symmetric polynomial of degree @ in n—1 variables

la|=a
for a=1,2,--, H'(0)=h,,(0)=1 and h'(a)=h, (a)=0 for a<0.

3) e, (l) =(=-1) Z x; --x,  the signed elementary symmetric polynomial of degree i in 7 variables for i=1,---,n ,

1£)<<j;i<n

e,(0)=1 and it is convenient to define e,(i/)=0 for i<0 or i>n.

n—1
4 U= H (z—xJzZe’(n—l—i)zi €R, where z=x, and e'(i)=e, (i) the signed elementary symmetric polynomial of

i=0,--,n-1 i=0

degree i in n—1 variables for i=0,---,n—1 and e'(i):O for i<0 or i>n-1.
By observing the product of the generation functions of complete homogeneous symmetric polynomials and signed elementary

i l=xt

i

symmetric polynomials: (ihn (i)t’) . (ieﬂ (j)t’] = ﬁ#ﬁ(l —xt)=1, we get the following well-known lemma.
0 =0

Lemma 2.1.2. The following holds:

n min{m,n}

Zhn(m—j)e”(j)=Zhn(m—j)e”(j)= Z h,(m—j)e,(j)=0 foranyinteger m=>1.

= j=0 j=0

2.2 Associated graded module G~ (R / I(a))

Our main objects are ideals generated by complete homogeneous symmetric polynomials of successive degrees:

I(a)=(h(a),h(a+1),~~~,h(a+n—1))gR for a>1 and n>1 and

I'(a)=(h'(a),h'(a+l),--~,h'(a+n—2))gR' for a>1 and n>2.

Foranideal /c R and feR,wedenote [:f= { ge R‘ gfel } . Maybe the following lemma is well-known, but we provide

a proof for the sake of a self-contained explanation.

Lemma 2.2.1. Let a be an integer with a>1. Then the following holds:

(1) h(a+r)el(a) for all integers r>0.
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n—

2) h(a+n*17j)e’(j)zza+n—l and ]( ):(h(a) (a+n 2) a+n—1)‘

J

I
=3

3) ( ) is a complete intersection ideal.
) I(a):2’ —(h(a) h(a+n=2),z""7) for 0<j<n+a-1.

Rz+1(a):2’ {0 (j=L-n+a-2)

©) Rz+1I(a) |R'/I'(a) (jza+n-1)

Proof. (1) It is enough to show that h(a+r)e](a) for r>a-+n—-1.Weprover this by inductionon r>a+n—-1.1f r=a+n-1,
then clearly h(a+n—l)e[() Let r>a+n—1. By Lemma 2.1.2, we have , (a+r) Zh (a+r-j)e,(j)=0. Hence by the
induction hypothesis and a+r—-n=a, hn(a+r)=h(a+r)el(a).

r

(2) We only prove the first equation. Since h(r)=>h'(r—i)z' =Y K (r—i)z' for r>0, we have

i=0 0
n-l n-1 a+n-1 n-1 _
h(a+n=-1=j)e'(j)=2 Y i (a+n-1-j-i)z'¢(j)= H(a+n-1-i-j)e(j)z
Jj=0 j=0 >0 i=0 j=0
a+n=2 n—1
a+nl+ h'a+n 1_[_]) (])Z :Za+nfl'
i=0  j=0
a+n—=2 n-1
Here we remark that W(a+n-1-i-j)e'(j)=0 byLemma2.1.2.since a+n-1-i>1 for a+n-22i(>0).
=0 j=0
R . R

.,

(3) Using (2), it is enough to show that dim, (h @k (a+n—2) P (a+n—1)) =dim, (h @ (a+n—2) z”*”’l) <

We prove this by induction on n the number of variables. If 7 =1, then the assertion clearly holds. Let n >1. By the induction

hypothesis, the following holds:
R . R

di =d .
U@y (avn=2),2) " (@ (avn=2)
. R . R
Hence we have dim <dim <o,
“(h(@), b, (a+n-2),27"") : (h,(@),h, (a+n-2),z)""

(4)By (3), h(a),h(a+1),---,z*"" is aregular sequence in R . Therefore the assertion holds by (2).

(5) This follows from (4). [

M(d) denotes the translation of a graded R -module M by degree deZ, ie., M(d), =M, for ieZ where M,

i

denotes the degree j€Z componentof M .Let /R bea m-primary homogeneousideal andput A=R// and 0z yeR,.

We have the following commutative diagram with exact rows:

A . [ A4 . A .

Lo =xy Vo =x) Lo =xy
) ) 4
0— ¥4 . = )11 -0
Y4
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Since ¢, and ¢, areisomorphisms, we have the following isomorphism: % (i) = )‘}f .
yA+(0:y") V4

Using this, we have also the following commutative diagram with exact rows:

yA+(O:y"“) . A ‘ y .
- [)}A-I—(Oy’)](_l) - [}/A-F(Oyl)](_l) - {yA-I—(OyV’I)J(_I) -0

b =x Lo —x Yo =
i xy=¢ i+l
0— kerg - 4 - # ) - 0.
yl A yl+ A

Since ¢, and ¢, are isomorphisms, we have the following remark.

Remark 2.2.2. The following holds for Artinian graded K -algebra A =R/ and every non-negative integer i:

iy A+(0: ™!
ker( )‘}HA 52 HZA j: 7 ( Y - ) (up to shifting), where 0=yeR,.
ya Ty yA+(0:)")

Definition 2.2.3. Let 4=R/I an Artinian graded K -algebra. We define the associated graded ring G}’(A) with respect to

i

0%yeR, asfollows: G*(4)=@G/(4),where G/ (A4)= )j;; for i=0,1,--.
y

20

Notation 2.2.4. Let / R be a homogeneous ideal and z=x, . (1 )z:O is an ideal of R such that

([)220 = Z(f

el

Z:O)R , where f ‘z:o is a polynomial evaluated at z=0.

Let ¢ be an indeterminant. We can assume that G’ (4) isa Gj (4)[¢]-module by defining the ¢ -actionon G’ (A4) as follows:

t
G (4) > G2 (4)

| © || . Since G'(4)=@G/(4)=@+G;(A4) isaprincipal G, (4)[¢]-module, we have
y[A ﬁ; yi+1A i0 >0
yHlA yi+2A

——— , then G;(A4)=A/zA=R'/I' where

G (A)¢t , : 4 i
0 (J )[ ] =G’ (A) for some graded ideal Jc Gy (A)[t] . Moreover, if y=z=x,
R'/T R . .
)[Z] _ Rl for some homogeneous ideal in,/  R[z]=R . Actually,

I'=(I),_,- Therefore taking 1=z, G*(4)= (f =
in

in“l = Zzi (infl) c R, where in7/= (1 : z[)Z:O for i=0,1,---. We state this as the remark bellow.

=0

Remark 2.2.5. G*(A4)=R/inI ,where in“/=z(in7l)c R with injI=(1:2") ~ for i=0,1,-.

20
We now recall the characterizations of the strong Lefschetz property (SLP) stated in [3] below.

Theorem 2.2.6. Let A=R/1 an Artinian graded K -algebra and assume that the characteristic of K is 0. Then the following

hold:
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(1) (Theorem 3.10 in (3)) A(I?K[t]/tdK[t] has the SLP for any integer d with d>1 if A has the SLP.

(2) (Theorem 4.6 in (3)) A has the SLP if and only if G” (A) has the SLP for some 0#y€eR,.

The following is our main theorem in this section.

Theorem 2.2.6. Let a,n be integers with a>1 and a>?2 .Then the following hold:
z - ’ ’ a+n-1 — ' a+n-1
(1) G*(R/I(a))=(R /I(a))(;;)(K[z]/z K[z])=R/(I'(a),z"") .

2) G* (R /I(a)) and R/I(a) have the SLP if the characteristic of the coefficient field K 1is0.

Proof. Let A=R/I(a) then G;(A)=R'/I'(a).

(1) By Lemma 2.2.1(5) and Remark 2.2.2, we have the following:

a+n-1

G (4)= @ Gy (4)7' = G; (4)®(K=1/ 2" Kz]).

Or equivalently, using Remark 2.2.5, in°/(a)= (1'(a), z‘””’l) since by Lemma 2.2.1 (4), IR = (1 :zi) , for 0<i<a+n-1

z=

and R:(I:zi) for i>a+n-1.
z=0
(2) We prove this by induction on n>2 the number of variables.

Let n=2. Using (1), GZ(A):GJ(A)(;)(K[Z]/Z‘”"" K[z]) has the SLP by Theorem 2.2.6(1), since both G; (4)=K[x]1/(x/)

and K[z]/z*"' K[z] have the SLP. Hence also A4 has the SLP by Theorem 2.2.6(2).

Let n>2. By the induction hypothesis, G;(4)=R'/I'(a) has the SLP. Again using (1) and Theorem 2.2.6(1), G*(A4) has the

SLP. Hence also A has the SLP by Theorem 2.2.6(2). U

3. Macaulay dual

3.1 Contraction

Let Z,Z,,, Z_ denote the set of integers, non-negative integers, non-positive integers respectively. We need several commutative

K -algebras stated as below.

Notation 3.1.1.
(1) R=K[x,,x,]=R'[z=x,] where R =K[x,,x,,].

(2) RV :K[xlila'”’xnil] .

(3) R=K[x,x,% ", x '] and R =K[x,-x,,% ", x,'].

>n

We introduce a partial order < on Z" as follows:

def
as<fea <p,,a, < p, forinteger vectors a =(a,,,a,), B=(B,.B,)€Z".

Notation 3.1.2.
(Z”)ZO:{a:(al,u-,an)eZ”‘aIZO,---,aMZO} , (Z”) :{a:(al,~--,an)eZ”
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We sometimes use the multi-index notation for monomials of Laurent monomial x“ =x“---x,“ e R ,where a=(a,,-,a,)€Z".

We need more notations before introducing the contraction.
Notation 3.1.3.
x“ (a < 0)

) 7[:R=K[xl,-~,xn,x1’1,~--,x”’l]—>RV=K[x1’1,~-,xn’l] a K -linear map defined by ﬂ(x“): .
0 (others)

2) ( )* R—>R a K -algebra isomorphism defined by (x“ )* =x"", which induces the K -algebra isomorphism between

sub K -algebras R and R, i.e, induces a duality (R) =R" and (Rv )* =R.

Definition 3.1.4.(Contraction) Let f,geRCcR,FeR"cR and £, (eR.

(1) (,_):RxR—>R K -bilinear map defined by <§,§>:7z(§§*).

(2) _-_:RxR" >R’ K -bilinear map defined by f-F=r(fF)=(f.F").

(3) cont(_,_):RxR’"— R" K -bilinear map defined by cont(f,g)= ﬂ(fg*) =(f.g).

We call cont(f,g) “the contraction of g by /. Especially, f-F:cont(f,F*) and cont(f,g)=/g".
Here we remark that the contraction operator is a variant of the differential operator. In this point of view, it is common to use the

divided power algebra instead of the polynomial ring R but in this paper, we don’t need the divided power structure.

Let grModR denote the category of graded R -modules.

Remark 3.1.5. We remark that R* egrModR . Let f,geRcR and F,GeR’ <R . Actually, the following hold:
0 fF+@=z(f(F+G)=n(fF+ fG)=n(fF)+7n(fG)=f -F+[-G.

@ (f+g)F=x(f+g) F)=n(fF+gF)=x(fF)+n(gF)=f -F+g-F.

(3) (fg)-F=7-(g-F) holds. Since for @,fe(2") ~and ye(Z"), ,wehave

P .(x/; .xy)zxa .ﬂ(xﬁw): ”(xa+ﬂ+*/) (ﬁ+}/£0): X (a+ﬂ+}/go):(xaxﬂ)-xy
0 (others) 0 (others) '

Here we use the fact that a+ f+y <0 implies f+y<0 (f+y<a+f+y)toprove the third equality of the above equation.

For general f = anx“, g= Zc ﬂxﬂ ,F = 2c7x7 , using the K -linearity of this product,

az0 B0 7<0
f(gF)= > ceex” '(x/’~xy)= > Cacﬂcy(xaxﬁ)"‘y:(fg)'F-
a=0,53>0,y<0 a=0,5>0,y<0

4 1-F=z(F)=F.
The following rules are convenient to calculate contractions by using the pairing <7,7> .

Remark 3.1.6. Let f,g,h € R . The following hold:

(1) cont(f,gh)=(f,gh)= ;r(f(gh)*) =z(feg'h")=(fg".h).
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@) cont(fg.h)=(fe.h)=7(feh")=r(fg'h")=(r.g"h).
(3) cont(f.g)=(/fe".1)=(L/"g).

The following lemma is quite simple but useful for calculating contractions.
Lemma 3.1.7. Let &= Zc[ (&)z', eR with ¢(&)eR' for i€Z and ('eR'. Then the following holds:

i€Z

(£.5)=2{c(£).07)2 =(&4.8") where £,= ¢ (£)7 .

i<0 i<0

Proof. (£.¢")=n(&")=Y7(c,(£)¢" 2 )= 7(c(£)¢" ) =2 (e, (£).¢) 2 =(&,.¢7). O

i€Z i<0 i<0

3.2 Macaulay dual
Let m be the graded maximal ideal of R.We remark that R =Homgr, (R,K)=E§ (R/m) the graded injective envelop of

the residue field R/m of R. M (d) denotes the translation of a graded R-module M by degree deZ,ie., M(d) =M,
for ieZ where M, denotes the degree jeZ componentof M and by abuse of notation, we denote M~ = Homgr, (M ,K )
Let I R beagraded Gorenstein m -primary ideal. Then the minimal free resolution of (R /1 )v has the following form:
0>F,—>—>R(d)—>(R/I)" >0 (exact),
since (R/I)" =(R/I)(d) for some deZ. Taking ( )" =Homgr,(_,K) on the above exact sequence, we have the minimal
injective resolution of R/1:
0—>R/I->R" —>->F’  —->F —0 (exact).
Hence R/I=R-F=R/ann(F) for some FeR’, where ann(F)={geR] g~F=0} . We call FeR' (or F'eR) a
“Macaulay dual generator” of the m -primary Gorenstein graded ideal /. Here we remark the following:

ann(f*)z{geR‘ cont(g,f):g.f*zo} for feR.

Notation 3.2.1. Let /c R bea m -primary graded ideal.
(1) soc(R/]):OR:”rﬁ:{geR/I\ gﬂ'ﬁ:O} the socle ideal of R/I,where m=m/[.

Moreover if I isa m -primary Gorenstein graded ideal, then soc(R/I ) =K (7d ) for some d €Z,, and we denote
(2) soc-deg(R/1)= d(: max{i € Z‘ (R/T),+ 0}) .

(3) F'(R/I)=F" (up to non-zero constant) if R/I=R-F .Wesaythat F" isaMacaulay dual generator of R/I.

The following lemma asserts that if there exists a surjective morphism between Artinian Gorenstein graded K -algebras of the

same socle degree, then the morphism is an isomorphism.

Lemma 3.2.2. Let [ cJ c R be Gorenstein m -primary graded ideals.
(1) If d=soc-deg(R/I)=soc-deg(R/J), then I=J.

) Igann(f*) and soc-deg(R/1)=deg [, then 1=ann(f*).
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Proof. (1) By the assumption, we have the surjective morphism ¢:R/I — R/J — 0 (exact). Taking out degree d part:
0—(kerp), >(R/1),—>(R/J), >0 (exact).

Since  dimy (R/1),=dim (R/J),=1 , (kerp) =0 . If kerp#0 , then soc(R/I)ckerp , especially

0#soc(R/1), < (kergp),.

Hence kergp =0. Thisimplies /=J .

(2) This follows by (1). U

3.3 Macaulay dual generator of /(a)

Let us begin with recalling and fixing some notations.

Notation 3.3.1.

n-l1
(1) =[] (z-x)=2.¢(n—i)z', where we recall that z=x, and ¢'(i)=e, (i) (i=0,---,n—1) the singned elementary

i=l,n-1 i=0

symmetric plynomial of dgree i in n—1 variables.

@ §‘P:_ [1 (xiz_l_l): e'(i)z"eR.

i=1,n—1 i=0

(3) 4=4, = H (x[ —xb/.) eR, A=4_= H (x‘. —x/) € R’ the Vandermonde polynomials.

nzi>j>0 n=12i>;>0

4) W(a):W(a)ze(n)HAeR, W’(a)zW

n n-1

(a)ze’(n—l)HA’eR’,where e(n)=x--x, and €'(n-1)=x-x

n-1"

Remark 3.3.2. Let a,n be integers with a>1 and n>2.
(1) A=0A'.

(2) W(a)=z""¢(n —1)’H VA =z""UW'(a).

® ¢l =¢(r-1) T] (=x)= [T (5e"-1)=4

i=l,n-1 i=l,--,n—1
(4) Taking dual ( )" on the above equation, we have ¥ =¢'(n—1)&; since e'(n—1) =¢'(n- 1)71 )
(5) W(a)=z"¢(n— 1)ZH e(n-1)& A=z (n-1)" A =z""E, W' (a).

(6) J(a)zZRh(a+r)<;R, J'(a)zZRh(a+r)gR.

=0 20

We recall the notations in section 2 bellow:
1(a):(h(a),h(g+1),-.-,h(a+n—1)):(h(a),---,h(a+n—2),2‘””71)gR ,where z=x,.

1'(a):(h'(a),~-~,h'(a+n—2)):(h'(a),-~-,h'(a+n—3),x:fl”’2)gR'.
Lemma 3.3.3. Let n=2 and R=[x, =x,x,=y]. Then](a)gann(W(a)*).

Proof. Since I(a) = (h(a),y’”l) , it is enough to show that 1) h(a) € ann(W(a)*) and ii) y**' € ann(W(a)*) .
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i) cont(h(a),W(a))zcont(Za:x“ Lx Ty (y ] <Zx" yLaye xay“_l>
<1 Zx‘ e Zx’ it 1> <1,x’1y“—x“y’l>=7z(xy’“—x"’y)=0.

if) Comparing the degrees with respect to the variable y : deg, y*"' =a+1>deg W (a)=a, cont(y‘”l,W(a)) =0. O

The following is a key lemma for our main result.

Lemma 3.3.4. We assume that n>2. Let h(a+r)&,z =Y c,z7? with ¢,eR and 0<r<n-1.

PpEL

Then c,el'(a+1) forall pel,.

Proof. h(a+r ép la[zh a+r— l ][Ze laj] Z h'(a_i_r_l-)e!(j)zlfaﬂ'fj.

i20 JjEL i20,jeZ

Hereweput 1-a+i—j=—-p.Then i=a+j—p-120 implies ;= p+1-a.Hence we have

Zh’(r+p+l—j)e’(j)=0 (p+1-a<0)
= z W(r+p+1-j)e(j)= "~ p=a for p>0,
Jzptl-a Z h'(r+p+l—j)e'(j)=—2h'(r+p+1—j)e'(j) (p+1-a=1)

Jjzp+l-a Jj=0

since r+p+121.

This implies ¢, e I'(a+1) forall peZ, since r+p+l-j>a+l for 0<j<p-a if p+l-a>21. O

Theorem 3.3.5. Let n>2. The following hold:
(1) I(a)gann(W(a)*) for any integer a>1.
2) I(a):(h(a),h(a+1),-~-,h(a+n—l)):ann(W(a)*),i.e., F*(R/I(a))zW(a) the Macaulay dual generator of R/I(a).

3) F” (GZ (R / I(a))) =W'(a)z*"? the Macaulay dual generator of G~ (R / I(a)) , where z=x, .

Proof. (1) It is enough show that h(a+r)e ann(W(a)*) ,ie., cont(h(a + r),W(a)) =0 forall reZ,.

We prove this by induction on number of variables n>2.For n=2, itis already done by Lemma 3.3.3. Let n>2.
Using Remark 3.3.2(5), Remark 3.1.6(1), Lemma 3.1.7, Lemma 3.3.4 and the induction hypothesis, we have
cont(h(a + r),W(a)) = <h(a + r),z“’lc_,“’;,W'(a» = <h(a + r){,‘q,zl"',W'(a»
:<(h(a+ r)fi,zl’”)<0,W'(a)> = cont(cp,W (a ))z’p =0,

Pl

where h(a+r)é,z" = "c,z7" with ¢, eR'.

PEL

(2) By (1), I(a) c ann(W(a)*) . Since I(a) isa m -primary complete intersection ideal by Lemma 2.2.1 (3), we have

(2a+n—3)
2

=n(a-1)+ n(nz— D) =degW (a).

soc-deg(R/I )nzlaﬂ—l
i=0

Hence I(a) = ann(W(a)*) by Lemma 3.2.2 (2). I
(3) From Theorem 2.2.6. and (2), we have

RABEFPIZR MREKS $15 (2024)



F(G*(R/ (@)= F*((R'/ 1) @(KL21/ 2 KL21)) = F* (R 1) F* (KL2)/ 2 'K L=1) = W () 22

3.4 Example
We compute some examples in 3 variables case using the Web Interface for Macaulay?2
(available at https://www.unimelb-macaulay?2.cloud.edu.au/#home). Below, we show the input script for the computation:

L1 R=QQ[x,y,z];
L2 b = n-> binomial(n+2,2)-1;h = (n,m) -> sum for i from 0 to m list (monomials(x+y+z)*n) (0,i);
h1 =h(1,b(1));h2 =h(2,b(2));h3 = h(3,b(3));h4 = h(4,b(4));h5 = h(5,b(5));h6 = h(6,b(6));h7 = h(7,b(7));h8= h(8,b(8));
L3 = (z-y)*(z-x);D= f*(y-x);e=x*y*z;g=y-x; W1 = D; W2= D*e; W3= D*e"2; W4= D*e"3; W5= D*e"4; W6= D*e"5;
L4 11 = ideal(h1,h2,h3); 12 = ideal(h2,h3,h4); I3 = ideal(h3,h4,h5);14 = ideal(h4,h5,h6); IS = ideal(h5,h6,h7); 16 = ideal(h6,h7,h8);

Explanation:

L1: Declares a polynomial ring in 3 variables.

L2: Generates complete homogeneous symmetric polynomials of degree 1 to 8.
L3: Defines Macaulay dual generators of degree 1 to 6.

L4: Creates ideals I(a)=(h(a),h(a+1),--~,h(a+n—1)) with 1<a<6.

After inputting the above script, for example:
(1) Input: contract(h3, W3), contract(h4, W3), contract(h5, W3)
Output: (0, 0, 0)

This shows that cont(/2(3), % (3)) = cont(h(4),W (3)) = cont (h(5),W (3)) =0..

However, we remark that cont( f, g)* = contract( f, g) .
(2) Input: ideal(fromDual(W5)) == 15

Output: true

This confirms that ann(W(S)*) =1(5).
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