
 

 

 

Almost regular sequences on graded modules 
associated with a subfunctor of the 0-th local cohomology functor II 

 

 

Satoru Isogawa1* 
 

This is the last part of this two-part series of papers, here, we introduce the - regular sequence in the category of finitely 

generated graded modules over a polynomial ring whose coefficient field is an infinite field. For a nonzero principal graded 

module, its first syzygy ideal being a completely -  full, is equivalent to that the principal module has a -  regular 

sequence whose length is equal to the Kull dimension of the base polynomial ring. This is the result of Watanabe and Harima, 

see Ref(1). We extend the result as follows. For graded modules whose first syzygies are generated by elements of the same 

degree, to have a component-wise linear syzygy so actually to have linear syzygy is equivalent to that there exists a -

regular sequence whose length is equal to the Kull dimension of the base ring. 
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1.  Introduction  

This is the last part of this two-part series of papers. Here, we introduce ‘ -regular elements, - regular sequences and - 

depth’s’ on graded modules given by strengthening the notion weak -regular, which we studied in the first part of this series of 

papers, to -regular.  

  For a nonzero principal graded module, its first syzygy ideal being a -full ideal, see Ref.(1), is equivalent to that the principal 

module has a -regular element in our terminology. In Ref.(2), they proved surprising result that completely -full ideals are just 

the ideals having component-wise linear resolutions, also see Ref.(3) or Ref.(4). The first syzygy ideal of a nonzero principal graded 

module is a completely -full ideal if and only if the -depth of the principal graded module is equal to the Kull dimension of base 

polynomial ring. 

  To extend this result to arbitrary modules is our main motivation through this series of papers. Toward solving this problem, first, 

we give several fundamental results on  -regular elements,  -sequences and  -depth base on the study of weak  -regular 

elements, weak  - regular sequences and weak  - depth’s on graded modules in the first part of this series of papers. As a 

consequence, we give a partial answer to the problem only in the case of modules whose first syzygies are generated by elements of 

the same degree (see Theorem 6.4). 

  In this paper, we follow the notations and definitions sated in the first part of this series of papers, see Ref(5). 
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2.  Preliminary  

  In this section, we add more notations and definitions needed later. 

 

Notation 2.1. Let ii
M M  and 10 z R . 

(1) j ii j
M M M  the graded submodule of M consisting of components of degrees being greater than or equal to j. 

(2) iiM RM M  the graded submodule of M  generated by the degree i component iM . 

(3) deg : i  the degree of  for a nonzero homogeneous element 0 iM i  if it exists. 

(4) deg-Supp : 0iM i M . 

(5) sup : max 0iM i M  if 0M , otherwise, sup0: .  

(6) inf : inf 0iM i M , if 0M , otherwise, inf 0: . 

(7) :
z

R R R zR  and :
z

R
M M R M , unless otherwise mentioned. 

(8) lengthM  denote the length of M , in our setting, length dimkM M  the dimension of k -vector space of M  through the 

natural inclusion of algebras: k R . 

(9) Let N M  be a graded submodule. Sat :  for some 0i
M N M N i , which is called the saturation of N  in 

M . By the definition, we remark that Sat Sat i
M MN N  for any integer 0i , where 0 : R . 

(10) :R R
M M M MF F M  denote a minimal graded free cover of M  over R . 

Of course, there are many choices of a minimal graded free cover of M , but R
M  is determined unique up to isomorphism as 

explained bellow.  

 

  Let :M MF M  be a minimal grade free cover of M , then we have the following exact sequence: 

10 0
M

R MM F M  (exact), 

where 1
RM   denote the first syzygy module of M   over R  . We remark that the above short exact sequence is unique up to 

isomorphism in the following sense, especially 1
RM  is unique up to isomorphism. In fact, if : F M  another minimal grade 

free cover of M , then using the grade Nakayama’s Lemma, we have the following commutative diagram with exact rows and all 

vertical morphisms being isomorphisms: 

10 0

0 Ker 0

M
R MM F M

F M
. 

  So, the following notations make sense. 

Notation 2.2. Let 10 0
M

R MM F M  be an exact sequence with :M MF M  a minimal grade free cover of M . 

(1) # # 1:R M RM M F M  and # # 1:i i i
R M RM M F M  for integers 0i , where we assume that 0 : R . 

(2) 1:j j
R M R j

M M F M  and 1:j j
R M R j

M M F M  for j . 
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  These notations depend on a choice of minimal grade free cover, but they are unique up to isomorphism. 

 

3.  -regular elements and sequences  

  First let 10 0
M

R MM F M  be an exact sequence with :R
M M MF M  a minimal grade free cover over R  and let 

:R R zR   with 10 z R  . Then we have an exact sequence 1 0
M

R

R MR R
R M F M  . Since :R R

M MR
R   is a minimal 

graded free cover of M  over R , we can see that R R
MM . Moreover, the first syzygy module of M  over R  has the following 

form:             1 1ker M R M MR R
M R M zF zF . 

So, we have       
1

1 1 1 1
1

R
R M M R M M R M R M

R

M
M zF zF M zF zF M zF M zF

M
. 

  Secondly, there is a natural short exact sequence 
#

1 #0 0
M R

R M RM F M , #
#: 0

R
M RM

F M  being a graded minimal 

free cover of #
RM  over R . We get the exact sequence 

#

1 # 0
MR R

R M RR R
R M F M , by applying 

R
R  to the above short 

exact sequence. Since # #:
R RM MR

R  is a minimal graded free cover of 
## 1

R M R M RM F M zF M  over R , we can see 

that # # # #
R R R R

R R
M M M M

.  

  Finally, there is a natural short exact sequence 
#

1 1 #0 0
M

R RM M M M . Applying 
R

R , we have the following 

exact sequence:             
#

1 1 # 0
M

R RR R
R M M M M . 

Moreover, we can see that     #

11
# #

1 11Ker : Tor ,R M RR
M

R M R

MM zF
R M M M k M

MM zF
. 

 

Remark 3.1. From the above observation, we have the following short exact sequence: 

#

#
10 Tor , 0

MR

R
R R

k M M M  (exact). 

 

Definition 3.2. Let 10 ,z R M . We call that z  is a on M , a - -M   

or a - on M  if the following condition holds: 

1
1 1Tor ,

0 Tor , Tor ,
R

R
zR

R R

M
R M k MzR  (exact), 
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where :R
zR

R kzR  is a natural projection and two functors 1Tor ,R R zR , 1Tor ,R k  are graded torsion functors. 

 

  From the definition of regular element, we have the following lemma. 

 

Lemma 3.3. Let M  and 10 z R  is a -regular element on M . Then the following holds: 

1deg-Supp 1 deg-Supp RR
M k M . 

 

Proof. By the assumption we have 1 10 Tor , Tor ,R RR M k MzR   (exact) where 1
1Tor ,R

RR
k M k M   and 

1Tor , 1 1R
z

R M M MzR  since 1Tor , 0R R MzR . Hence the assertion follows.  

 

Definition 3.4. Let M . We define -nzd M  the ‘non zero-divisor’ locus of M  in 1R  as follows: 

1-nzd :  is a -regular eleme  nn otM z z MR . 

 

Definition 3.5. A sequence 1, , rz z z  of elements in 1R  is called a on M , - -M  or, 

more simply, -M of length r  if the following conditions are satisfied: 

(1) The set 1, , rz z  is linearly independent over the field k . 

(2) First, 1z  is a -regular elements on M and if 2r ,  

then iz  is a -regular elements on 
1 1, , i

M
z z M  for 2, ,i r . 

 

Remark 3.6. Two conditions (1) and (2) in the above definition are equivalent to the following condition (3): 

(3) 
1 1

1

i i

iz R  is a -regular elements on 
1i

M  for 1, ,i r , 

where 
0

:R R , 
1

: , ,
i

i

RR z z R , :
i i

R
M M R  and 

1i

iz  denoting the image of iz  in 
1i

R  for 1, ,i r . 

4.  Properties of -regular elements 

  For M , we have the following commutative diagrams with exact rows and all vertical morphisms being isomorphisms: 

#

#
1

1 1 1 1

0 Tor , 0

0 0

M

R

R R M R M R

k M M M

M M F M F M
, 

where  is the natural projection. Applying two functors 
R

k  and 
R

R  where :R R zR  with 10 z R  to the top row of 
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the above commutative diagram, we have the following commutative diagrams with exact rows: 

#

#

##
1 1 1 1 1

#
1 1

0 Tor , Tor , Tor , Tor , Tor , 0

Tor , Tor , 0

M

M

R R R R R

R

R R

R k R

R k M R M R M k M M M

k M k M k M k M
, 

where 1: Tor ,R
R

zR
M . We can see that #M

k  is an isomorphism, so  is an epimorphism, especially an isomorphism 

since  is an endomorphism of the finite dimensional vector space 1Tor ,R k M . Since , where  is an isomorphism, 

we have Coker Coker . On the other hand, by Remark 6.3, # 1Coker Ker Tor ,R
M

R k M  we have the following exact 

sequence: 

#
1 1 1 1 1 1

#
1

0 Tor , Tor , Tor , Tor , Tor , Coker Tor , 0

Tor , 1 1 1

R R R R R R

R
z z

R k M R M R M k M k M

k M M M
 

  For M , let denote : dim Tor ,R R
i k iM k M  the i -th total Betti number of M  over R . As an immediate consequence 

of the above exact sequence, we have the following proportion: 

 

Proposition 4.1. Let 10 ,z R M . The following conditions are equivalent: 

(1) z  is a - -M regular element; 

(2) #
1 lengthR

zM M ; 

(3) z  is a weak # - -M  regular element and #
1 lengthR M M ; 

(4) 1 1 lengthR R
zM M M . 

 

Proof. The equivalences (1) (2) (4)  are clear by the exact sequence stated above. We only prove (2) (3) . 

(2) (3)  : #
1 lengthR

zM M   implies #
11 Tor , 1R

z M k M   so # #
z M M   since # 0z M  . 

Therefore, z  is a weak # - -M  regular element and # #
1 length lengthR

zM M M . 

(3) (2) : Since z  is a weak # - -M  regular element, we have # #
z M M .  

Hence, # #
1 length lengthR

zM M M .  

 

Corollary 4.2. Let M . The following holds: 
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# #
1- -nzd if length

-nzd
otherwise

Rw M M M
M  . 

Especially -nzd M  is a Zariski open set in 1R . 

 

Proposition 4.3. Let M . If 10 z R  is a - regular element on M , then the following hold: 

1 11R RR
R M M M , 

where : RR zR  and : MM zM ,especially, 1 1deg-Supp deg-Supp 1 deg-SuppR RR R
k M M k M . 

 

Proof. Let :M MF M  be a graded minimal free cover, then we have the following exact sequence: 

10 0
M

R MM F M  (exact). 

Taking tensor functor
R

R  on the above exact sequence yields the following exact sequence: 

1
10 Tor , 0

MR

R
R MR R RR

R M R M R F R M  (exact). 

Since 1Ker M RR
R M , from the above exact sequence, we get the following commutative diagram with exact rows: 

1

1 1
1

1
1 1

Tor ,

0 Tor , 0

0 Tor , Tor ,
R

R

R
R RR

R R
RRM

R M R M M

R M k M k M

, 

where the right vertical morphism  is a natural projection. The morphism  is split since 1Tor ,R
R

zR
M  is a split injective 

morphism between finite dimensional vector spaces.  

Hence we have 

1 1 1 1
1Tor , 1 1R

R zR R RR
R M R M M M M M M .  

5.  Regularity and -regular sequence 

  First, we recall the definition of the Castelnuovo-Mumford regularity. 

 

Definition 5.1. (See Ref.(4)) Let M . The Castelnuovo-Mumford regularity or simply regularity regR M  is define as follows: 

reg : sup Tor , 0R
R i i j

M j k M . 

Especially, reg 0:R . 
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Proposition 5.2. Let M . If 1 10 , , 1rz z z R r  is a - -M sequence, then the following hold: 

1 1 1reg max sup , regR R R R RR
M k M M , 

where 
1

: , , r

RR z z R  and :
R

M R M , especially the inequality 1 1reg regR RR R M M  holds. 

 

Proof. We prove this induction on r  the length of - -M sequence.  

  If 1r , then we remark that the following hold: 

1 1reg regR R RR R
M R M . 

Since 1z   is 1
RM  -regular element, so 1 1R R

ij R ij RR
M R M  for any nonnegative integer i   and any integer j  , where 

1R
ij RM  and 1R

ij RR
R M  denote the graded Betti numbers of 1

RM  over R  and 1
RR

R M  over R  respectively. 

  By Proposition 6.11, 1 1 1 1reg reg reg 1 max reg 1 , regR R RR R R R R RR
M R M M M M M , and  

1reg 1 sup 1 sup 1 sup RR R
M M M k M , 

since 1M  is a direct sum of copies of residue field k  with reg 0R k  up to grading. 

As a consequence, we have the following inequality:  

1 1 1 1 1sup reg max sup 1, reg max sup , regR R R RR R R RR R
k M M M M k M M . 

This is equivalently to say that 

1 1 1reg max sup , regR R R R RR
M k M M . 

  If 2r , then from the above argument, we can see that 

1 1 1reg max sup , regR R R R RR
M k M M  

where 
1

RR z R , 
1

MM z M .  

On the other hand, let 2 1, , rz z R  be images of 2 1, , rz z R . Then 2 1, , rz z R  is a - -M sequence. 

So, by the induction hypothesis, we have 

1 1 1 1 1reg max sup ,reg max sup ,regR R R RR R R RR R
M k M M k M M , 

where 
12

: , ,, , rr

R RR Rz z Rz z R
, :

R
M R M M . 
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Using 1 1sup supR RR R
k M k M  by Proposition 4.3, we conclude that  

1 1 1 1 1 1reg max sup , sup , reg max sup , regR R R R RR R R RR R R
M k M k M M k M M   

 

6.  In the case of modules whose first syzygies are generated by the elements of the same degree 

  In this section, we will arrive at our main goal that is Theorem 6.4. 

 

Lemma 6.1. Assume that M  with 1deg-Supp RR
k M d  for some d . 

If 1 1, , 1rz z z R r  is a - -M sequence, then the following are equivalent: 

  (1) 1regR RM d ; 

  (2) 1regR R M d  or 1 0R M , where 
1

: , , r

RR z z R  and 
1

: , , r

MM z z M . 

 

Proof. 1 2  : By Proposition 4.3, 1 1deg-Supp deg-Supp RRR R
k M k M d   If 1 0R M  , then 

1deg -Supp RR
k M d  . Using Proposition 5.2, we have 1 1reg regR RR Rd M M d  . This implies 

1regR R M d . 

2 1 : Using Proposition 5.2, if 1 0R M , then 1 1 1reg max sup , regR R R R RR
M k M d M d .  

Similarly, if 1regR R M d , then 1 1 1reg max sup , regR R R R RR
M k M d M d d .  

 

 

 

Lemma 6.2. Let M  with 1deg-Supp RR
k M d  for some d . Then the following hold: 

  If 1regR RM d , then deg-Supp 1M d  or 0M . 

 

Proof. We recall that 1[ , , ]R k x x  is a polynomial ring. The following hold: 

1
1 1H , , ; Tor , Tor ,R R

RM x x M k M k M , 

where 1H , , ;x x M  denote the Koszul homology of M  with respect to 1, ,x x R . 
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So, if 0M  , then we have 1
11 deg-Supp Tor , deg-SuppR

Rd k M M   since 1
RM   has d  -linear 

resolution. This implies deg-Supp 1M d .  

 

Proposition 6.3. Let M  with 1deg-Supp RR
k M d  for some d  or 1 0RM .  

Then the following are equivalent: 

  (1) deg-Supp 1M d  or 0M ; 

  (2) sup 1M d  or 0M ; 

  (3) 1 1Sat
M

i
R F R d i
M M  for any nonnegative integer 0i , where we assume that 0 : R ; 

  (4) Any 1z R  with nzdz M M  is a # - -iM regular element, especially, #-nzd nzdiM M M   

     for any nonnegative integer 0i ; 

  (5) #-depth 1iM  for any nonnegative integer 0i ; 

  (6) -depth 1M . 

 

Proof. 1 2 , 5 6  these implications are trivial. 4 5  holds since nzd M M  by Ref(5).Remark 4.9.  

6 1  follows from Lemma 3.3, that is; 1deg-Supp 1 deg-Supp RR
M k M d .  

We only prove 2 3 , 3 4 . 

  Let 10 0
M

R MM F M   be a short exact sequence with :M MF M   a minimal grade free cover of M   and let 

1: Sat
MF R ML M F  the saturation module of 1

RM  in MF . Then 1Sat
M

i
F R ML M F  for any integer 0i , we have the 

following short exact sequence:            (A) 1 #0 0i i
RM L M . 

Especially, we have                      (B) 10 0RM L M . 

2 3 : First, we prove that 1
R dM L . 

  If 0M , then 0M , from the short exact sequence (B), 1
R dM L L  since 1deg-Supp RR

k M d . 

  If 0M , then sup 1 supM d M , so, 0
d

M , we have 1 1
R R d dM M L . 

We remark that 1 1
R R dd dM M L L  this implies 1i i

R d idM L L  for any nonnegative integer 0i . 

3 4 : Using our assumption, 1 1 1
1

i i
d i d i R RL L M M  for 0i . 

Moreover, from the short exact sequence (A), we have the following short exact sequence: 

#0 0i
d iL L M . 

We remark that 1 nzdR L since ML F . Let 1z R  with 1nzd nzdz M M R L . Then we have 
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# 1 1 1
1 1

i i i
z d i d i d i d i d i R RM L z L L L L L M M  for 1i . 

From the above isomorphism, we have # 1 1 1 1 #
1 length lengthiR i i i

R RM M M M . Using Proposition 4.1, we 

have #- -nzd iz w M . Hence we have # # #- -nzd nzd - -nzdi i iz w M M M w M  for 1i .  

 

Theorem 6.4. Let M  with 1deg-Supp RR
k M d  for some d  or 1 0RM .  

Then the following are equivalent: 

  (1) -depth Kull-dimM R ; 

  (2) 0M  or there exists 1 1, , 1z z z R r  a - -M sequence with Kull-dimR , especially where 0M .  

  (3) 1 0RM  or 1regR RM d , especially where 1 0RM . 

 

Proof. (1) (2): This is clear by the definition of -depth . 

(2) (3): If 1 0RM , then especially 0M . So, by the assumption, there exists 1 1, , 1z z z R r  a - -M sequence with 

Kull-dimR . Let 1: , ,R R z z R k  and :
R

M R M  a finite dimensional k -vector space with 1 1 0kR M M . 

Using Proposition 5.2, 1 1 1 1reg max sup , reg max sup , reg 0R R R R kR RR R
M k M M k M d d . 

  (3) (1): If 1 0RM  then M  is zero or a graded free module over R . So, we have -depth Kull-dimM R . 

  Let 1regR RM d . We prove this induction on Kull-dimR . If 1 , automatically -depth 1M . 

Let 1 . Since 1regR RM d , especially 1 0RM , we have deg-Supp 1M d  by Lemma 6.2. Hence -depth 1M  

by Proposition 6.3. So, we can take a - -M regular element 10 z R  and let :R R zR , :M M zM .  

  It is enough to show that -depth Kull-dimM R , since this is equivalent to -depth Kull-dimM R . 

If 1 0R M , then M  is a graded free module over R , so we have -depth Kull-dimM R . 

If 1 0R M , then by Lemma 6.1, we have 1reg R R M d  and Kull-dim 1R . So applying the induction hypothesis, 

we have -depth Kull-dimM R .  

7.  Application to computing Poincare series of graded modules 

  As an application, we give explicit form of Poincare series of graded modules sated in Ref.(5) Lemma 6.1. 

 

Notation 7.1. Let M . R
M MP P  the graded Poincare series and MH  the Hilbert series of M  are defined as follows: 

(1) 
0

1

,
, , : [ , ]R R i j

M M ij
i j

P t u P t u M t u t u u ,  
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where we denote : dim Tor ,R R
ij k i j

M k M  the graded Betti number of M . 

  (2) 1: dim [ ]M k j
j

H u M u u . 

 

Lemma 7.2. Assume that M  and 10 z R  with -nzdz M . Let denote :R R zR  and :M M zM . 

Then the following equation holds: 

1, , ,
R

R R R
M M k MM

P t u H u P t u t P t u tu . 

 

Proof. Let denote 1 1 1:R R RM M z M . We remark that z  is a regular element on 1
RM . By Proposition 4.3, we have 

1 1, , , ,
R RR

R R R R
MMM M

P t u P t u P t u P t u u . 

On the other hand, the following is always holds: 

1, ,
R

R R
M M k M

P t u H u P t u t . 

Hence the assertion follows.  

 

  Using the same notations in Ref.(5) Lemma 6.1, we have the following Proposition: 

 

Proposition 7.3.  

  (1) Let : , 1  or M e k e e . Then we have 3 2, 1 1MP t u e u u t u t . 

  (2) Let : 0M d d . Then we have 3 2, 1 2 1MP t u d d d u ut d u t .  

 

Proof. Applying Lemma 7.2, we have the following: 

(1) 3 2, 1 1 1R
MP t u e eut eu tu tu e u u t u t . 

Since, using Ref(5). Proposition 6.2, we can easily see that the following hold: 

eM k k
H u H u e , 1

1
, ,e

R

R R
M R

P t u P t u eu  and 
1

, , 1e
R R

M k
P t u P t u eu tu . 

(2) 2 3 2, 1 1 1 1 2 1R
MP t u d d u u t d u tu tu d d d u ut d u t . 

Similarly, since we have the following: 

dM k k
H u H u d , 1 1

2

1 2
, , 1d

R

R R
M R R

P t u P t u d u u  and 1 1
, , 1 1d

R R
M k

P t u P t u d u tu  

by Ref(5). Proposition 6.2.  

 

Remark 7.4. We remark that 1,R
M M RH u P u H u  holds in general. If [ , ]R k x y , then 2

1
1RH u

u
. 

With the same notations as Proposition 7.3 (1) and (2) respectively, in fact, we can confirm the following equations: 
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  (1) 
3

2

1 1
1

1M

e u u u
H u e u

u
. 

  (2) 
3

2

1 2 1
1

1M

d d d u u d u
H u d d u

u
. 
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