Paper

Almost regular sequences on graded modules

associated with a subfunctor of the 0-th local cohomology functor I
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For graded modules whose first syzygies are generated by elements of the same degree, to have a component-wise linear
syzygy so actually to have linear syzygy is equivalent to that there exists a - regular sequence whose length is equal to the
Kull dimension of the base ring. This is the main result of this two-part series of papers, which is also a partial extension of
the result of Watanabe and Harima, see Ref(1). In the first part of papers, here we give some preparatory results, especially,
we introduce the weak y-regular sequence in the category of finitely generated graded modules over a polynomial ring

whose coefficient field is an infinite field and give some fundamental results concerning the weak y- regular sequence.
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1. Introduction

In the first part of this two-part series of papers, we introduce ‘weak y -regular elements, weak y - regular sequences and weak
y - depth’s’ on graded modules, which are defined by a subfunctor y of the 0-th local cohomology functor T, =H? . All weak »
-regular elements are almost regular elements which is the terminology sited in Herzog’s book, see Ref.(2). In this sense, a weak y -
regular element is a generalization of an ordinary regular element. But the behaviors of weak » -regular elements on short exact
sequences are difficult to control unlikely in the case of regular elements. So, we strengthen the notion weak y -regular to y -regular
by adding a slight condition in the second part of this series of papers, then y -regular sequences have good properties among almost
regular sequences.

In fact, for a nonzero principal graded module, its first syzygy ideal being a m -full ideal, see Ref.(3), is equivalent to that the
principal module has a y -regular element in our terminology. In Ref.(1), they proved surprising result that completely m -full ideals
are just the ideals having component-wise linear resolutions, also see Ref.(4) or Ref.(5). The first syzygy ideal of a nonzero principal
graded module is a completely m -full ideal if and only if the  -depth of the principal graded module is equal to the Kull dimension
of base polynomial ring.

To extend this result to arbitrary modules is our main motivation, in spite not completely achieving this goal yet. So, in the first part
of this series of papers, we give several fundamental results on weak- y -regular elements, weak- y -sequences and weak- y -depth

toward solving this problem. The notations y -regular elements, y -sequences and y -depth will appear in the second part.
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2. Preliminary

Let R=kx,--,x,]= g—())R,. be a polynomial ring in v>1 variables Xx,,---,x, over an infinite field & and let m:=@R, be

i>0
the graded maximal ideal of R , we sometimes use the notation m, := R, for any positive integer i>0. We always denote the set
of integers by Z . We denote grModR the category of graded modules over R, whose graded components are all finite
dimensional over £ , that is; for any object M = @Z M, in grtModR, dim, M, <o forall ieZ , where M, the graded component

of degree i of M and M(j)egrtModR the j-shift of M in grModR, where M (j) =M,

for any i, jeZ . We remark that

homomorphisms in grMod R are morphisms of degree 0, that is; R -linear maps which preserve degrees;
Hom, 4z (M,N)={feHomR (M,N)|f(M,) N, for anyieZ} .

We also denote the category of finitely generated graded modules over R by A:=grmodR as a full subcategory of grModR .

A has hom, the inner hom functor, that is; forany M,NeA :

homA(M,N)::SBZhomA(M,N)I_ eA,

where homA(M,N) :HomA(M,N(i)) for ieZ .Weremark in fact that homA(M,N):HomR(M,N) forany M, Ne A,

since hom , (R,N) =N, and hom, (R, N) =N =Hom, (M,N) ,solet Fi >F, >M —0 (exact) be a free representation in

i i

A , we have the following commutative diagram with exact rows and vertical morphisms being isomorphisms:

0 — hom,(M,N) — hom,(M,F,) — hom,(M,F)
\
0 — Hom,(M,N) — Hom,(M,F,) — Hom,(M,F)

i

From now on, we define Hom, (M,N) :=Hom, (M,N(i)) , then we can see that Hom, (M,N)= @ZHomR (M,N)I_ eA for

any M,N e A . We mainly work in the category A , however, remark that we sometimes drop denoting the shift functor (i )

for simplicity.

3. Definition of weak y -regular elements and sequences

For a nonzero proper homogeneous ideal 0=/ < R we denote:
v(M)={&eM|I£=0},
then, we can see that y, (M ) =Hom,, (R /I,.M ) through the natural isomorphism. For a principal homogeneous ideal 7= Rf
with 0= f e R ahomogeneous element, we denote , (M) =7, (M) for simplicity.

Moreover, if 7 =m , we simply denote 7(M) =V (M) which is so-called ‘socle of M ’°,then y can be seen a left exact
subfunctor of 0-th local cohomology functor ', =H,, , where T' (M)=H,(M)=Yy (M).

izl

Notation 3.1. Let 07/ <R be a nonzero proper homogeneous ideal. We denote the i-th derived functor of y, by ¥, . More

precisely, since y,(M)=Hom, (R/I,M), y;(M)="Ext,(R/I,M) the i-th graded extension module for an integer i>0,
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where we assume that y;":=y, . If /=m then we denote y, =y andif 7=Rf,thendenote y, =y, forsimplicity.

Remark 3.2. Since y, (M )="Ext,(R/I,M), we remark that if 0=/<. <R nonzero proper homogeneous ideals, then there is

the natural transformation Ext}, (40,7) :y) =y, induced by the projection @:R/I—>R/J.
Notation 3.3. Let 0#zeR,, M € A . We denote xz:M — M Hom, (M,M)l the degree one morphism multiplying by z .

Definition 3.4. Let 0#zeR,,M A . Wecall that z isaweak y -regular element on M ,a weak M-y-regular element or a

weak y- ’non zero-divisor’on M if the following condition holds:

0—>y(M)—>M—>M (exact), thatis; y(M)=y.(M).

Remark 3.5. The following holds:

(1) By definition, if M =0,thenany O#zeR, isaweak p -regularelementon A .

(2)If mM =0, thatis; y(M)=M ,thenany O%zeR, =m, isaweak p -regularelementon M .
(3) We remark that weak y -regular elements on A are all contained in R, \{0} if they exist.

“4) }/(M) =7, (M) if and only if my, (M) =0.

(5) Since y,(M)(—1)="Tor (%R’M ) , 7(M)=y.(M) isequivalentto m"Tor, (%R,M ):0 ,

where “Tor(R/zR,_) denote the graded torsion functor.

Definition 3.6. A sequence z=z, -z, (r > 1) of elements in R, is called a weak y -regular sequence on M , more simply,
aweak M-y-sequence of length 7 if the following conditions are satisfied:
(1) The set {zl,-n,z,_} is linearly independent over the field & .

(2) First, z, isaweak p -regularelementon A .

If »r>2,then z isaweak y -regular element on M foreach i=2,---,r.
; (2102 )M

Remark 3.7. Two conditions (1) and (2) in the above definition are equivalent to the following condition (3):

3) ZT.(H) S (ﬁ(H)) is a weak y -regular elements on M(H) for i=1,---,r,
1

=0 S0 _ R —0) _ () — (=) . . L =@ )
where R =R, R = %z 2R M .—M(?R and z; denoting the image of z, in R for i=1---,r.
e,

Remark 3.8. Different form the ordinary M- regular sequence, see Definition 1.1.1 in Ref.(6), a weak A7-y- sequence depends on
its order, see Example 3.10. Moreover we do not know whether all maximal weak A7-y- sequences have the same length or not by
lacking of universal tool for measuring the length of a maximal weak A7-y- sequence like the local cohomology in the case of ordinary

M- regular sequences.
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Notation 3.9. Let M . A . The invariant w-y-depthM called the weak y-depth of M is defined as follows:
()If M =0, then we define w-y-depth M =w-y-depth0:=c0 in convention, where we consider that ZU{oo} is an ordered set
with co>i forall i€eZ and Z having ordinary order.
(2) We denote  w-y-depthM =0, if and only if there is no weak y- regular elementon M .
(3) If there is a weak y-regular element on A and M # 0, then we define:

w-y-depth M = max {r‘ z=z,,z, is a weak M -y-sequence} .

Remark 3.10. If M =0, then w-y-depthM <v, where v=Kull-dimR which is equal to the number of variables of R .

Example 3.11.Let R=k[x,y], m=(x,y)R and M = m/(m3 +y2R) .Then x,y isa M-y-sequencebut y,x isnota A -y-

sequence. Since ;/(M):;/X(M)zmz/(m3+y2R), M/xM:mmZ:kx®ky but jfy(M):(m2+yR)/(m3+y2R)¢7/(M).

4. Non zero-divisor loci

Let 0=M e A and let Ass,M be a set of associated prime ideals of M , see Ref.(6) for the definition. Since M is a

Noetherian graded module, all associated primes are homogeneous, see Lemmal.5.6 in Ref.(6), especially, pcm forall peAss,M

and Ass M is a finite set. Moreover, it is well known that Ker(xf:M —>M)=0 ifandonlyif f¢ Up for 0=/ eR.

peAsspM

Notation 4.1. Let 7 Dbe a finite dimensional vector space over k , we denote the projective space associated with V' by P}V and

forany 0=vel , we denote the image of v in PV by [v] ePr.
Definition 4.2. Let M €A . We define nzd(M ) the non zero-divisor locus of M in PR, as follows:

nzd(M )= {[z] € ]P‘R]‘O >MoM (exact)} .

Remark 4.3. If M =0, then forany 0#zeR, the following sequence is exact, that is;

0—>M—>M (exact),so nzd(M)=nzd(0)=PR,.

Lemma 4.4.Let 0=M e A. If meAss,M, then nZd(M) is a nonempty Zariski open subset of PR, .

Proof. We put NZD, (M ):= {0 #z eRl‘O —>M->M (exact)} . Then pNR CR, is a proper subset for any peAss,M by the

assumption m ¢ S , SO * = pN 1S a nonem; ariski open subset o , since the vector space
pti Ass,M ,so @#NZD,(M)=R,\ U (pnR,) i pty Zariski open subset of R,, since th p

peAsspM
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R, over the infinite field & cannot be covered by a union of finitely many proper subspaces, moreover, which are in general a Zariski

closed subset of R,.Let &J#NZD, (M )—)R1 —PR, be the composition of natural inclusion z and the natural projection 7 . We

see that nzd(M)=7o1(NZD,(M))< PR, is anonempty Zariski open subset. []

Remark 4.5. From the above Lemma 4.4, we can see that nzd(M / r, (M )) is always a nonempty Zariski open subset of PR, since

MJT, (M)=0or otherwise m g Ass,(M/T, (M)).

Againlet 0= M e A.If dim, M <oo, then a homothety xz is a linear map on finite vector space on M , so we can define the

rank of a homothety as follows: rank(xz) =dim, Im(xz) <o, For any positive integer >0, the set

U i (M) = {[z] €PR |rank(xz: M —>M)> i} c PR,

is a Zariski open subset of PR, , see Ref.(7). Let r = max{i €z,

m:

U s (M) # @} and denote U(M):=U,,,... (M).

Definition 4.6. Let M e A . We define w-y-nzd(M) the w-y -‘non zero-divisor’locus of M in PR, as follows:

w-y-nzd(M )= {[z] € ]P’Rl‘z is a weak y-regular element on M} .

Lemma 4.7. Let 0#ze€R,, M € A .The following conditions are equivalent:
(1) z isaweak y-regular elementon M ;

(2) The following two sequences are exact:

0—>7(M)—>Fm(M)X—Z>Fm(M) (exact) and 0—>M/Fm(M)X—:>M/Fm(M) (exact) .

Proof. First, we remark that y(M )= 7(Fm (M)) since y(M)<=T, (M)cM .If M =T, (M), then we have nothing to prove.
So, we assume that M =T (M) .Then mg Ass, (M/l"m (M)) , in this case, we notice that M/l"m (M) contains no nonzero finite
length submodule, since any nonzero finite length module has a nonzero socle.

We have the following commutative diagram with exact rows and columns:

Kera - Kerp —  Kerp
\ " "
0 - r, (M) -> M - M/T (M) - 0
i/(z::x: \Lﬂ::xz J/p::xz ,
0 - r, (M) - M - M/T (M) - 0
\
L. (M)/T, (M)

From the above commutative diagram, using the Snake-Lemma, if (2) holds, then Kerp=0 and Kera = 7(M ) =Kerf, so (1) holds.

On the other hand, if (1) holds, from the above commutative diagram, Kerf = 7(M ) and we have, again using the Snake-Lemma,
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dim,Kerp <dim,Kerg +dim, ", (M )/l (M) =dim,y (M )+dim, T, (M)/zT,, (M) <.

Hence Kerp=0 since Kerp isa finite length submodule of M/T', (M), where mg Ass,(M/T, (M)),so (2) holds. O
As an immediate consequence of the above Lemma 4.7, we have the following proposition.

Proposition 4.8. Let M e A .The following hold:
w-y-nzd(M )= w—)/-nzd(l"m (M)) mnzd(M/l"m (M)) .

Remark 4.9. We remark that nzd(M / r, (M )) #@ by definition. Hence w-y-nzd(M )= ifand only if w—y-nzd(l"m (M )) .

5. Properties of weak y-regular elements

In this section, we observe that the properties of weak y- regular elements.

Lemma 5.1. Let 0— L7>M—>N — 0 be a short exact sequence in A .
4

If 0—);/(L)(—>)7/(M)—>;/(N)—>0 is exact, then w-y-nzd(L)w-y-nzd(N) < w-y-nzd(M).

7(f 7(g)

Especially, if w-y-depth(L),w-y-depth(N)>1, then w-y-depth(M)=1.

Proof. If [z]€ w-y-nzd(L)w-y-nzd(N), then we have the following commutative diagram with exact rows:
0 =) 7(L) = r(M) = (V) - 0
I { [
0 > 7(L) - (M) > 7 (N)
By the Five-Lemma, the middle vertical inclusion is an isomorphism. Hence [z]€w-y-nzd(M).

Especially, if w-y-depth(L), w-y-depth(N)>1, then w-y-nzd(L) and w-y-nzd(N) are nonempty Zariski open subset in the
irreducible space PR, , so W—}/—nzd(L) N w—j/-nzd(N ) is also a nonempty Zariski open subset in PR, . By the above result, we have:
D+ w-y-nzd(L) "w-y-nzd(N) < w-y-nzd(M)

Therefore w-y-depth(M)>1. O

Lemma5.2.Let LM in A.Then y-nzd(M)cy-nzd(L). Especially, if y-depth(M)=1, then y-depth(L)>1.

Proof. If [z]ew-y-nzd(M) , then y(M)=y. (M) by definition, so we have y(L)=Lny(M)=Lny. (M)=y.(L) and
[z]e w-y-nzd(L). Hence w-y-nzd(M )< w-y-nzd(L) holds.

Especially if y-depth(M)>1, then & # w-y-nzd(M)c w-y-nzd(L) so we have w-y-depth(L)>1. O

Lemma 5.3. Let 0—> L7>M—>N — 0 be a short exact sequence in A .
8
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If y(L)V(zf)y(M)and my!(L)=0 with [z]€y-nzd(L)Ny-nzd(M), then [z]e y-nzd(N).

Especially, if w-y-depth(L),w-y-depth(M)>1 and wy!(L)=0, then w-y-depth(N)=1.

Proof. If [z]€ y-nzd(L)y-nzd(N), then we have the following commutative diagram with exact rows:

r(L) = y(M) - y(N) - r'(L)

(/) #(2)
I I v +
1
7(L) 2 (M) >0 r(N) 5 7L

From the above commutative diagram, we see that & is injective since (L) E—})y(M) ,s0 7.(f):7.(L)>y.(M) is also an
V4V

isomorphism. Hence we have my_(N)< my!(L)=0.By Remark 3.5.(4), we see that [z]e y-nzd(N).O

6. Examples of 1-y-non zero-divisor locus

Let Kull-dimR=2,thatis; R is the polynomial ring in two variables R=£[x,y].In this section, we observe that the w~y-non
zero-divisor locus of indecomposable graded modules whose components vanish other than degree zero and one.

Using the classification of the representations of 2-Kronecker quiver, see Ref. (8), we have the following lemma:

Lemma 6.1. Let 0=M =M ,®M, €A be a nonzero indecomposable graded module and let denote m°:=R. Then M is

isomorphic to one of the following three types of modules:

e-1

W Ri(e)= ™ (m"”+(/1x—y)@R)

(e=1) (Aek,ex1), mx(e)::[mel

@

) B(d)= (m"%lw)(dfl) (.if d=1) ;
k(=1) (if d=0)

3) 3(d)= (md%f’“)v(*d) (if d21),

k (if d=0)

From Lemma 3.2.2. and Lemma 3.3.3 in Ref.(8), we have the following lemma:

Proposition 6.2. Under the same notations as above, we have the following:
(1) w-ynzd(R,(e))=PR\{[Ax—y]} and w-ynzd(R,(e))=PR\{[x]} forany Aek,ex1.
Let M:=9R,(e) (Aek,ex1)orR, (e) and 0#zeR, with [z]ew-ynzd(M).
Then we have y(M)=k*(~1), M/zM =k° and w-y-depthM =2.

(2) w-y-nzd(P(d))=w-y-nzd(3(0))=PR, forany d=0, especially w-y-depthT(0)=2.
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Let 0#zeR, with [z]e w-y-nzd(‘ﬁ(a’)) (d>0).

Then we have y(‘ﬁ(d)):k‘“'(fl), %(d)/z‘li(d):kd"@k[t] and w-y-depthB(d)=2 forany d=0.

k[t

(3) w-y-nzd(3(d)) =1, especially w-y-depth3(d)=0, for any d>1.

Remark 6.3. In the second part of this series of papers, we introduce the y- non zero-divisor locus y-nzd(M) and the y- depth
y-depth M of graded module M € A . By the definition, we can easily see that the following hold:
(1) }/—nzd(f)%,1 (e)) =PR, \{[ﬂx —y]} , especially y-depthR, (e)=2, forany Aek,e>1 and
y-nzd(iR . (e)) =PR,\ {[x]} , especially y-depth®R , (e)=2.
(2) y-nzd(P(d))=y-nzd(3(0))=PR,, especially y-depth3(d)=y-depth3(0)=2, forany d>0.
(3) y-nzd(3(d))=, especially y-depth3(d)=0, forany d>1.
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