On Diophantine Equation $a^{x_2} - a^{x_1} = b^{y_2} - b^{y_1}$

Nobuo Kobachi*

In this paper, we study the diophantine equation $a^{x_2} - a^{x_1} = b^{y_2} - b^{y_1}$. This equation is rewritten to the diophantine equation $(a^{x_{12}} - 1)/b^{y_1} = (b^{y_{12}} - 1)/a^{x_1}$. Then, by considering the factorization into prime factor of $b^{y_{12}} - 1$, we find solutions of the equation. In the case of $b^{2m} - 1 = l_1^{s_1}$, the equation has two solutions. In the case of $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ ($m \ne 1$), the the equation has two solutions. In the case of $b^{2m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ ($m \ne 1$, 2), if m is even, the equation has no solutions. Furthermore, if m is odd, the equation has a unique solution under condituins which a is a prime number and a_{12} is even. In the case of $a_1^{2m} - 1 = a_1^{s_1} l_2^{s_2} l_3^{s_3} l_4^{s_4}$ ($a_1^{2m} \ne 1$), the diophantine equation has a unique solution.

Keywords: Diophantine equation, Existence of solutions, Factorization into prime factors

1. Intoroduction

In this paper, we treat the diophantine equation

$$(1.1) a^{x_2} - a^{x_1} = b^{y_2} - b^{y_1}.$$

In the case of $x_2 = 2$ and $x_1 = y_1 = 1$, Mordell⁽¹⁾ proved theorem 1.1.

Theorem 1.1 Let a, b be integers.

The elliptic diophantine equation $a^2 - a^1 = b^3 - b^1$ has ten solutions

$$(a, b) = (0, 0), (0, \pm 1), (1, 0), (1, \pm 1), (3, 2), (-2, 2), (15, 6), (-14, 6)$$

Furthermore, Mignotte and Pethö⁽²⁾ proved theorem 1.2.

Theorem 1.2 Let a, b, y_2 be positive integers.

When b is a prime power, the diophantine equation

$$a^2 - a^1 = b^{y_2} - b^1$$
 ($y_2 > 2$)

has five solutions $(a, b, y_2) = (3, 2, 3)$, (6, 2, 5), (91, 2, 13), (16, 3, 5), (280, 5, 7).

We suppose the following conditions:

- 1) All variables in this paper are positive integers,
- 2) Integers a, b are not powers, and let $a > b \ge 2$,
- 3) Let $x_2 > x_1$ and $y_2 > y_1$.

^{*}Faculty of Liberal Arts

Then, Bennett $^{(3)}$ give the following list of solutions on (1.1):

$$(1.2) 3^2 - 3^1 = 2^3 - 2^1,$$

$$(1.3) 33 - 31 = 25 - 23,$$

$$(1.4) 35 - 31 = 28 - 24,$$

$$(1.5) 53 - 51 = 27 - 23,$$

$$(1.6) 13^3 - 13^1 = 3^7 - 3^1,$$

$$91^2 - 91^1 = 2^{13} - 2^1,$$

$$(1.8) 6^2 - 6^1 = 2^5 - 2^1,$$

$$(1.9) 15^2 - 15^1 = 6^3 - 6^1,$$

$$(1.10) 280^2 - 280^1 = 5^7 - 5^1,$$

$$(1.11) 4930^2 - 4930^1 = 30^5 - 30^1,$$

$$(1.12) 65 - 64 = 38 - 34$$

Let $x_{12} = x_2 - x_1$, $y_{12} = y_2 - y_1$.

When gcd(a, b) = 1, (1.1) leads the diophantine equation

(1.13)
$$\frac{a^{x_{12}}-1}{b^{y_1}} = \frac{b^{y_{12}}-1}{a^{x_1}} := k.$$

When $gcd(a, b) = d^{s}(>1)$, where d is not power, (1.1) leads the diophantine equation

(1.14)
$$\frac{a^{x_{12}}-1}{R^{y_1}} = \frac{b^{y_{12}}-1}{a^{x_1}} = k,$$

where $a = d^u A$, $b = d^v B$, $\min\{u, v\} = s$ and $ux_1 = vy_1$. Furthermore A, B do not include any prime factors of d. And, if b is a prime number, (1.14) leads

(1.15)
$$a^{x_{12}} - 1 = \frac{b^{y_{12}} - 1}{a^{x_1}} = k,$$

where $a = b^u A$.

Let l_1 , l_2 , l_3 , l_4 be different prime numbers. Then we show the following theorems:

Theorem 1.3 Let $b^{y_{12}} - 1 = l_1^{s_1}$. When $y_{12} = 2m$, (1.1) has two solutions (1.2), (1.3).

Theorem 1.4 Let $b^{y_{12}} - 1 = l_1^{s_1} l_2^{s_2}$. When $y_{12} = 2m \ (m \ne 1)$, (1.1) has four solutions (1.4), (1.5), (1.8), (1.12).

Theorem 1.5 Let $b^{y_{12}} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$. When $y_{12} = 4m \ (m \ne 1)$, (1.1) has no solutions.

Theorem 1.6 Let $b^{y_{12}} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$. When $y_{12} = 4m + 2$, if a is a prime number and x_{12} is even then (1.1) has a unique solution (1.6).

Theorem 1.7 Let $b^{y_{12}} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3} l_4^{s_4}$. When $y_{12} = 4m \ (m \ne 1)$, (1.1) has a unique solution (1.7).

2. The proof of Theorem 1.3

We prove theorem 1.3 by using the following Catalan's theorem:

Catalan's theorem Let α , β , x, y be positive integers.

Then the equation $\alpha^x - \beta^y = 1$ has a unique solution $(\alpha, \beta, x, y) = (3, 2, 2, 3)$.

Let M_p be Merseme prime numbers with power p, so that $M_p = 2^p - 1$ ($p = 2, 3, 5, 7, 13, \cdots$).

Proposition 2.1 The equation $b^{y_{12}} - 1 = l_1^{s_1} (y_{12} \neq 1)$ has solutions $3^2 - 1 = 2^3$ and $2^p - 1 = M_p^{-1} (p = 2, 3, 5, 7, 13, \cdots)$.

Proof When $s_1 > 1$, from Catalan's theorem, the equation $b^{y_{12}} - 1 = l_1^{s_1}$ has a unique solution $3^2 - 1 = 2^3$. When $s_1 = 1$, $l_1 = (b-1) \times \{(b^{y_1} - 1)/(b-1)\}$ leads b-1=1. Thus we have b=2 and $l_1 = M_p$.

Corollary 2.2 When $y_{12} = 2m$, the equation $b^{y_{12}} - 1 = l_1^{s_1}$ has two solutions $3^2 - 1 = 2^3$, $2^2 - 1 = 3^1$.

We remark $a > b \cdot 2$.

In the case of gcd(a, b) = 1, from Corollary 2.2 and (1.13), we have

$$\frac{3^{x_{12}}-1}{2^{y_1}}=\frac{2^2-1}{3^1}=1,$$

so that $3^{x_{12}} - 1 = 2^{y_1}$. Thus this equation has two solutions $(x_{12}, y_1) = (1, 1), (2, 3)$.

In the case of gcd(a, b) > 1, from Corollary 2.2 and (1.15), we have

$$(2^{u}\cdot 3)^{x_{12}}-1=\frac{2^{2}-1}{3^{1}}=1,$$

so that $(2^u \cdot 3)^{x_{12}} = 2$. This equation has no solutions.

Remark 2.3 Kobachi⁽⁴⁾ prove that if gcd(a, b) = 1 then the diophantine equation $\frac{a^{x_{12}} - 1}{b^{y_1}} = \frac{b^{y_{12}} - 1}{a^{x_1}} = 1$ has two solutions $\frac{3^1 - 1}{2^1} = \frac{2^2 - 1}{3^1} = 1$, $\frac{3^2 - 1}{2^3} = \frac{2^2 - 1}{3^1} = 1$.

3. The proof of Theorem 1.4

Lemma 3.1 The system of equations $\begin{cases} b^m - 1 = 1 \\ b^m + 1 = K \end{cases}$ has no solutions except K = 3.

Proof It is clear.

Lemma 3.2 The system of equations $\begin{cases} b^m - 1 = 2 \\ b^m + 1 = K \end{cases}$ has no solutions except K = 4.

Proof It is clear.

Lemma 3.3 The equations $b^m + 1 = 2^{r+1} (m \ne 1)$ has no solutions.

Proof It is clear from Catalan's theorem.

Proposition 3.4 The equation $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ ($m \ne 1$) has three solutions $2^4 - 1 = 3^1 \cdot 5^1$, $2^6 - 1 = 7^1 \cdot 3^2$, $3^4 - 1 = 5^1 \cdot 2^4$.

Proof In the case of $b \equiv 0 \pmod 2$, we may assume $l_1^{s_1} < l_2^{s_2}$. And $\gcd(b^m - 1, b^m + 1) = 1$ is satisfied. Then, from lemma 3.1, the equation $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ ($m \ne 1$) leads the system of equations $\begin{cases} b^m - 1 = l_1^{s_1} \\ b^m + 1 = l_2^{s_2} \end{cases}$ ($m \ne 1$). From proposition 2.1, the equation $b^m - 1 = l_1^{s_1}$ has solutions $2^p - 1 = M_p^{-1}$ ($p = 2, 3, 5, 7, 13, \cdots$). If p > 3 is satisfied then $(2^p + 1)/3$ includes at least one odd prime number except 3. Thus $2^p + 1 = l_2^{s_2}$ has no solutions. Therefor $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ has two solutions $2^4 - 1 = 3^1 \cdot 5^1$, $2^6 - 1 = 7^1 \cdot 3^2$.

In the case of $b \equiv 1 \pmod 2$, we may assume $l_2^{s_2} = 2^{r+2}$. And $\gcd(b^m - 1, b^m + 1) = 2$ is satisfied. Then, from lemma 3.2 and lemma 3.3, the equation $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ $(m \ne 1)$ leads the system of equations $\begin{cases} b^m - 1 = 2^{r+1} \\ b^m + 1 = 2 l_1^{s_1} \end{cases} (m \ne 1)$. From proposition 2.1, the equation $b^m - 1 = 2^{r-1}$ has a unique solution $3^2 - 1 = 2^3$. Thus $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ has a unique solution $3^6 - 1 = 5^1 \cdot 2^4$.

We remark $a > b \ge 2$.

In the case of gcd(a, b) = 1, from proposition 3.4 and (1.13), we have the following equations:

(3.1)
$$\frac{3^{x_{12}}-1}{2^{y_1}} = \frac{2^4-1}{3^1} = 5,$$

(3.2)
$$\frac{5^{x_{12}}-1}{2^{y_1}} = \frac{2^4-1}{5^1} = 3,$$

(3.3)
$$\frac{7^{x_{12}} - 1}{2^{y_1}} = \frac{2^6 - 1}{7^1} = 9,$$

$$\frac{3^{x_{12}} - 1}{2^{y_1}} = \frac{2^6 - 1}{3^2} = 7,$$

$$\frac{5^{x_{12}} - 1}{3^{y_1}} = \frac{3^4 - 1}{5^1} = 16.$$

If (3.1) is satisfied then $x_{12} = O_5(3) = 4$, where notation $O_q(z)$ is multiplicative order of z module q. Thus $3^4 - 1 = 2^4 \cdot 5^1$ follows. Therefor (3.1) has a unique solution $(x_{12}, y_1) = (4, 4)$.

If (3.3) is satisfied then $x_{12} = O_9(3) = 7$. Thus $7^3 - 1 = 2^1 \cdot 3^2 \cdot 19^1$ follows. There (3.3) has no solutions. In the same way, we confirm that (3.1) and (3.2) each have a unique solution. Therefor (1.1) has two solutions (1.4), (1.5). In the case of gcd(a, b) > 1, from proposition 3.4 and (1.15), we have the following equations:

(3.4)
$$(2^{u} \cdot 3)^{x_1} - 1 = \frac{2^4 - 1}{3^1} = 5 ,$$

(3.5)
$$(2^{u} \cdot 5)^{x_{1}} - 1 = \frac{2^{4} - 1}{5^{1}} = 3 ,$$

$$(2^{u} \cdot 7)^{x_{1}} - 1 = \frac{2^{6} - 1}{7^{1}} = 9 ,$$

$$(2^{u} \cdot 3)^{x_{1}} - 1 = \frac{2^{6} - 1}{3^{2}} = 7 ,$$

$$(3^{u} \cdot 5)^{x_{1}} - 1 = \frac{3^{4} - 1}{5^{1}} = 16 ,$$

(3.6)
$$(3^{u} \cdot 2)^{x^{1}} - 1 = \frac{3^{4} - 1}{2^{4}} = 5,$$

$$(3^{u} \cdot 4)^{x^{1}} - 1 = \frac{3^{4} - 1}{4^{2}} = 5,$$

$$(3^{u} \cdot 16)^{x^{1}} - 1 = \frac{3^{4} - 1}{16} = 5$$

If (3.4) is satisfied then $(2^u \cdot 3)^{x_1} = 6$. Thus (3.4) has a unique solution $(u, x_1) = (1, 1)$.

If (3.5) is satisfied then $(2^u \cdot 5)^{x_1} = 4$. Thus (3.5) has no solutions.

In the same way, we confirm that (3.4) and (3.6) each have a unique solution. Thus (1.1) has two solutions (1.8), (1.12).

4. The proof of Theorem 1.5

Lemma 4.1 Let l be a prime number. The system of equations $\begin{cases} b^{2m} - 1 = l^s \\ b^{2m} + 1 = K \end{cases} (m \neq 1) \text{ has no solutions except } K = 5, 10.$

Proof From corollary 2.2, the equation $b^{2m} - 1 = l^s$ has two solutions $3^2 - 1 = 2^3$, $2^2 - 1 = 3^1$. Thus K = 10, 5 are obtained.

Proposition 4.2 The equation $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ ($m \ne 1$) has two solutions $2^8 - 1 = 3^1 \cdot 5^1 \cdot 17^1$, $3^8 - 1 = 2^5 \cdot 5^1 \cdot 41^1$.

Proof In the case of $b \equiv 0 \pmod 2$, we may assume $2 < l_1^{s_1} < l_2^{s_2} < l_3^{s_3}$. And $\gcd(b^{2m} - 1, b^{2m} + 1) = 1$ is satisfied. From lemma 3.1 and lemma 4.1, the equation $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ $(m \ne 1)$ leads the system of equations $\begin{cases} b^{2m} - 1 = l_1^{s_1} l_2^{s_2} \\ b^{2m} + 1 = l_3^{s_3} \end{cases} (m \ne 1).$

Furthermore, from proposition 3.4, the equation $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ ($m \ne 1$) has two solutions $2^4 - 1 = 3^1 \cdot 5^1$, $2^6 - 1 = 7^1 \cdot 3^2$. Thus the equation $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ ($m \ne 1$) has a unique solution $2^8 - 1 = 3^1 \cdot 5^1 \cdot 17^1$.

In the case of $b \equiv 1 \pmod 2$, we may assume $l_3^{s_3} = 2^{r+2}$ and $2 < l_1^{s_1} < l_2^{s_2}$. Furthermore $\gcd(b^{2m} - 1, b^{2m} + 1) = 2$ and $v_2(b^{2m} + 1) = 1$ are satisfied. From lemma 4.1, the equation $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ ($m \ne 1$) leads the system of equations $\begin{cases} b^{2m} - 1 = 2^{r+1} l_1^{s_1} \\ b^{2m} + 1 = 2 l_2^{s_2} \end{cases}$ ($m \ne 1$). And, from Proposition 3.4, the equation $b^{2m} - 1 = 2^{r+1} l_1^{s_1}$ ($m \ne 1$) has a unique solution $3^4 - 1 = 2^4 \cdot 5^1$.

Thus the equation $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ ($m \ne 1$) has a unique solution $3^8 - 1 = 2^5 \cdot 5^1 \cdot 41^1$.

We remark $a > b \ge 2$.

In the case of gcd(a, b) = 1, from proposition 4.2 and (1.13), we have the following equations:

$$\frac{3^{x_{12}}-1}{2^{y_1}} = \frac{2^8-1}{3^1} = 85,$$

$$\frac{5^{x_{12}}-1}{2^{y_1}} = \frac{2^8-1}{85^1} = 3,$$

$$\frac{5^{x_{12}}-1}{2^{y_1}} = \frac{2^8-1}{5^1} = 51,$$

$$\frac{17^{x_{12}}-1}{2^{y_1}} = \frac{2^8-1}{5^1} = 15,$$

$$\frac{15^{x_{12}}-1}{2^{y_1}} = \frac{2^8-1}{15^1} = 17,$$

$$\frac{5^{x_{12}}-1}{3^{y_1}} = \frac{3^8-1}{5^1} = 1312,$$

$$\frac{1312^{x_{12}}-1}{3^{y_1}} = \frac{3^8-1}{1312^1} = 5,$$

$$\frac{41^{x_{12}} - 1}{3^{y_1}} = \frac{3^8 - 1}{41^1} = 160,$$

$$\frac{205^{x_{12}} - 1}{3^{y_1}} = \frac{3^8 - 1}{205^1} = 32.$$

In the case of gcd(a, b) > 1, from proposition 4.2 and (1.15), we have the following equations:

$$(2^{u} \cdot 3)^{x_{12}} - 1 = \frac{2^{8} - 1}{3^{1}} = 85,$$

$$(2^{u} \cdot 5)^{x_{12}} - 1 = \frac{2^{8} - 1}{5^{1}} = 51,$$

$$(2^{u} \cdot 5)^{x_{12}} - 1 = \frac{2^{8} - 1}{5^{1}} = 5,$$

$$(2^{u} \cdot 17)^{x_{12}} - 1 = \frac{2^{8} - 1}{17^{1}} = 15,$$

$$(2^{u} \cdot 15)^{x_{12}} - 1 = \frac{2^{8} - 1}{15^{1}} = 17,$$

$$(3^{u} \cdot 5)^{x_{12}} - 1 = \frac{3^{8} - 1}{5^{1}} = 1312,$$

$$(3^{u} \cdot 1312)^{x_{12}} - 1 = \frac{3^{8} - 1}{1312^{1}} = 5,$$

$$(3^{u} \cdot 1312)^{x_{12}} - 1 = \frac{3^{8} - 1}{160^{1}} = 41,$$

$$(3^{u} \cdot 2)^{x_{12}} - 1 = \frac{3^{8} - 1}{2^{5}} = 205,$$

$$(3^{u} \cdot 205)^{x_{12}} - 1 = \frac{3^{8} - 1}{32^{5}} = 205,$$

$$(3^{u} \cdot 205)^{x_{12}} - 1 = \frac{3^{8} - 1}{32^{5}} = 32.$$

Thus (1.1) has no solutions.

5. The proof of Theorem 1.6

Lemma 5.1 If $b^{4m+2} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ then b = 2, 3.

Proof We have

(5.1)
$$b^{4m+2} - 1 = (b^2 - 1) \times \frac{b^{4m+2} - 1}{b^2 - 1} = (b^2 - 1) \times \frac{b^{2m+1} - 1}{b - 1} \times \frac{b^{2m+1} + 1}{b + 1}.$$

From $b^2 \ge 4$, there exists a prime number l with $l \cdot b^2 - 1$ and $l \mid (b^{4m+2} - 1)/(b^2 - 1)$. Therefore, from $\gcd((b^{2m+1} - 1)/(b-1), (b^{2m+1} + 1)/(b+1)) = 1$, $b^{4m+2} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ leads $b^2 - 1 = l_i^{s_i}$ ($1 \le s_i' \le s_i$, $i \in \{1, 2, 3\}$). Thus, from corollary 2.2, we have b = 2, 3.

We remark that x_{12} is even in this section. Put $x_{12} = 2n$.

In the case of b=2, $l_1^{s_1}=3^1$, $l_2^{s_2}=M_p^{-1}$ ($p \ge 5$) and $l_3^{s_3}=(M_p+2)/3$ are satisfied from (5.1). In (1.15), thus we have the following equations:

(5.2)
$$\frac{3^{2n}-1}{2^{y_1}} = \frac{2^{2p}-1}{3^1} = \frac{M_p(M_p+2)}{3},$$

(5.3)
$$\frac{M_p^{2n} - 1}{2^{y_1}} = \frac{2^{2p} - 1}{M_p^{1}} = M_p + 2,$$

(5.4)
$$\frac{l_3^{2n} - 1}{2^{y_1}} = \frac{2^{2p} - 1}{l_2^{s_3}} = 3M_p.$$

When (5.2) is satisfied, we have $3^{2n} - 1 = 2^{y_1} \cdot M_p^{-1} \cdot l_3^{s_3}$. From proposition 4.2, n = 2 or n is odd. If n = 2 then $2^{y_1} \cdot M_p^{-1} \cdot l_3^{s_3} = 2^4 \cdot 5^1$. We have a contradiction. If n is odd then $M_p = (3^n - 1)/2$ from (5.1) and $M_p^{-1} > l_3^{s_3}$. Thus $2^{p+1} - 1 = 3^n$ is obtained. We have a contradiction.

When (5.3) is satisfied, we have $M_p^{2n} - 1 = 2^{y_1}(M_p + 2)$. Thus $2^{y_1+1} + 1 \equiv 0 \pmod{M_p}$, so that $2^p - 1 \mid 2^{y_1+1} + 1$ is satisfied. We have a contradiction.

When (5.4) is satisfied, we have $l_3^{2n} - 1 = 2^{y_1} \cdot 3 \cdot M_p$. From proposition 4.2 and lemma 5.1,

 $n=1, \ 2 \quad \text{follows.} \quad \text{If} \quad n=1 \quad \text{then} \quad l_3^2-1=2^{y_1}\cdot 3\cdot (3l_3^{s_3}-2)>2^{y_1}\cdot 3^2\cdot (l_3^{s_3}-1) \quad . \quad \text{Thus} \quad s_3=1 \quad \text{is obtained.} \quad \text{Then} \\ 2^{y_1}\cdot 3\cdot M_p=\{(M_p+2)/3\}^2-1 \quad , \quad \text{so that} \quad 2^{y_1}\cdot 3^3(2^p-1)=2^3\cdot (2^{p-2}+1)(2^{p-1}-1) \quad \text{is satisfied.} \quad \text{Therefore we have} \quad y_1=3 \quad \text{and} \\ 27(2^p-1)=(2^{p-2}+1)(2^{p-1}-1) \quad \text{Furthermore, from} \quad p\geq 5 \quad , \quad 27(2^p-1)=(2^{p-2}+1)(2^{p-1}-1) \quad \text{leads} \quad -1\equiv 1 \pmod 4 \ . \quad \text{We have a contradiction.} \quad \text{If} \quad n=2 \quad \text{then} \quad 3M_p=\frac{l_3^2-1}{2^{y_1-1}}\cdot \frac{l_3^2+1}{2} \quad , \quad \text{so that the system of equations} \quad \frac{l_3^2-1}{2^{y_1-1}}=3 \quad \text{and} \quad \frac{l_3^2+1}{2}=M_p \quad \text{is obtained.} \quad \text{In equation} \quad \frac{l_3^2-1}{2^{y_1-1}}=3 \quad \text{and} \quad \frac{l_3^2-1}{2^{y_1-1}}=3 \quad \frac{l_3^2$

Thus we have $3 \cdot 2^{y_1 - 1} = 2M_p - 2 = 4(2^{p-1} - 1)$. Therefore $y_1 = 3$ and p = 3 follow. But the result is contradict to $p \ge 5$.

In the case of b=3, $l_1^{s_1}=2^3$, $l_2^{s_2}=(3^m-1)/2$ and $l_3^{s_3}=(3^m+1)/4$ are satisfied from (5.1).

In (1.15), thus we have the following equations:

(5.5)
$$\frac{l_2^{2n}-1}{3^{y_1}} = \frac{3^{2m}-1}{l_2^{s_2}} = 8l_3^{s_3},$$

(5.6)
$$\frac{l_3^{2n} - 1}{3^{y_1}} = \frac{3^{2m} - 1}{l_3^{s_2}} = 8l_2^{s_2}.$$

When (5.5) is satisfied, we have $l_2^{2n} - 1 = 2^3 \cdot 3^{y_1} \cdot l_3^{s_3}$. From proposition 4.2 and lemma 5.1,

n = 1, 2 follows. If n = 1 then $l_2^2 - 1 = 2^1 \cdot 3^{y_1} \cdot (l_2^{s_2} + 1) > 2^1 \cdot 3^{y_1} \cdot (l_2^{s_2} - 1)$. Thus $s_2 = 1$ is obtained. Then $\left(\frac{3^m - 1}{2}\right)^2 - 1 = 2^3 \cdot 3^{y_1} \cdot \frac{3^m + 1}{4}$ leads $3(3^{m-1} - 1) = 2^3 \cdot 3^{y_1}$. Thus we have $y_1 = 1$ and m = 3. Therefore (5.5) has a solution

(5.7)
$$\frac{13^2 - 1}{3^1} = \frac{3^6 - 1}{13^1} = 56.$$

If n=2 then $3^{y_1} \cdot l_3^{s_3} = \frac{l_2^2 - 1}{4} \cdot \frac{l_2^2 + 1}{2}$, so that the system of equations $\frac{l_2^2 - 1}{4} = 3^{y_1}$ and $\frac{l_2^2 + 1}{2} = l_3^{s_3}$ is satisfied. Thus $l_3^{s_3} - 2 \cdot 3^{y_1} = 1$, so that $3^{y_1} (3^{m-y_1} - 8) = 3$ is obtained. Therefore we have $y_1 = 1$ and m=3. Furthermore $l_2^2 = 13$ follows. We have a contradiction.

When (5.6) is satisfied, we have $l_3^{2n} - 1 = 2^3 \cdot 3^{y_1} \cdot l_2^{s_2}$. From proposition 4.3 and lemma 5.1, n = 1, 2 follows. If n = 1 then $l_3^2 - 1 = 2^3 \cdot 3^{y_1} \cdot (2l_3^{s_2} - 1) > 2^4 \cdot 3^{y_1} \cdot (l_3^{s_2} - 1)$. Thus $s_2 = 1$ is obtained. Then $\left(\frac{3^m + 1}{4}\right)^2 - 1 = 2^3 \cdot 3^{y_1} \cdot \frac{3^m - 1}{2}$ leads $3(3^{m-1} - 1)(3^m + 5) = 2^6 \cdot 3^{y_1} \cdot (3^m - 1)$. Thus we have $y_1 = 1$ and $(3^{m-1} - 1)(3^m + 5) = 2^6 \cdot (3^m - 1)$. Furthermore

 $(3^{m-1}-1)(3^m+5)=2^6\cdot(3^m-1)$ leads $1\equiv -1 \pmod 3$. We have a contradiction. If n=2 then $3^{y_1}\cdot l_2^{s_2}=\frac{l_3^2-1}{4}\cdot \frac{l_3^2+1}{2}$, so that the system of equations $\frac{l_3^2-1}{4}=3^{y_1}$ and $\frac{l_3^2+1}{2}=l_2^{s_3}$ is satisfied. Thus $l_2^{s_2}-2\cdot 3^{y_1}=1$, so that $3^{y_1}(3^{m-y_1}-4)=5$ is obtained. We have a contradiction.

6. The proof of Theorem 1.7

Proposition 6.1 In the case of $b \equiv 0 \pmod{2}$, the equation $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3} l_4^{s_4}$ ($m \ne 1$) has two solutions $2^{12} - 1 = 3^2 \cdot 5^1 \cdot 7^1 \cdot 13^1$, $2^{16} - 1 = 3^1 \cdot 5^1 \cdot 17^1 \cdot 257^1$.

Proof From lemma 3.1 and Lemma 4.1 and $gcd(b^{2m}-1, b^{2m}+1)=1$, we have

(6.1)
$$\begin{cases} b^{2m} - 1 = l_1^{s_1} l_2^{s_2} \\ b^{2m} + 1 = l_2^{s_3} l_4^{s_4} \end{cases}$$

(6.2)
$$\begin{cases} b^{2m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3} \\ b^{2m} + 1 = l_4^{s_4} \end{cases}$$

If (6.1) is satisfied, from proposition 3.4, $b^{2m} - 1 = l_1^{s_1} l_2^{s_2}$ has two solutions $2^4 - 1 = 3^1 \cdot 5^1$, $2^6 - 1 = 3^2 \cdot 7^1$. When $2^4 - 1 = 3^1 \cdot 5^1$ is satisfied, $l_3^{s_3} l_4^{s_4} = 17$ follows. We have a contradiction. When $2^6 - 1 = 3^2 \cdot 7^1$, $l_3^{s_3} l_4^{s_4} = 65 = 5^1 \cdot 13^1$ follows. Thus $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3} l_4^{s_4}$ has a solution $2^{12} - 1 = 3^2 \cdot 5^1 \cdot 7^1 \cdot 13^1$. If (6.2) is satisfied, from proposition 4.2 and lemma 5.2, we have the follows:

i) $b^{2m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ has a solution $2^8 - 1 = 3^1 \cdot 5^1 \cdot 17^1$. Then $l_4^{s_4} = 257^1$ follows. Thus $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3} l_4^{s_4}$ has a solution $2^{16} - 1 = 3^1 \cdot 5^1 \cdot 17^1 \cdot 257^1$.

ii) b=2 and $m \equiv 1 \pmod{2}$ are satisfied. Then $l_4^{s_4} = 4^m + 1 = 5^1 \times \{(4^m + 1)/5\}$ follows. Since there exists an odd prime number $l \neq 5$ with $l \mid (4^m + 1)/5$, this result does not occur.

Proposition 6.2 In the case of $b \equiv 1 \pmod{2}$, the equation $b^{4m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3} l_4^{s_4} \pmod{m \neq 1}$ has no solutions.

Proof We may assume $l_4^{s_4} = 2^{r+2}$. Furthermore $gcd(b^{2m} - 1, b^{2m} + 1) = 2$ and $v_2(b^{2m} + 1) = 1$ are satisfied. From lemma 4.1, we have

(6.3)
$$\begin{cases} b^{2m} - 1 = 2^{r+1} l_1^{s_1} \\ b^{2m} + 1 = 2 l_2^{s_2} l_3^{s_3} \end{cases},$$

(6.4)
$$\begin{cases} b^{2m} - 1 = 2^{r+1} l_1^{s_1} l_2^{s_2} \\ b^{2m} + 1 = 2 l_3^{s_3} \end{cases}$$

If (6.3) is satisfied, from Proposition 3.4, $b^{2m} - 1 = 2^{r+1} l_1^{s_1}$ has a solution $3^4 - 1 = 2^4 \cdot 5^1$.

Then $l_2^{s_2}l_3^{s_3} = 41$ follows. We have a contradiction. If (6.4) is satisfied, from proposition 4.2 and lemma 5.2, we have the follows:

i) $b^{2m} - 1 = l_1^{s_1} l_2^{s_2} l_3^{s_3}$ has a solution $3^8 - 1 = 2^5 \cdot 5^1 \cdot 41^1$. Then $l_4^{s_4} = 3281 = 17^1 \times 193^1$ follows. We have a contradiction.

ii) b=3 and $m \equiv 1 \pmod{2}$ are satisfied. Then $l_4^{s_4} = (9^m+1)/2 = 5^1 \times \{(9^m+1)/10\}$ follows. Since there exists an odd

prime number $l \neq 5$ with $l \mid (9^m + 1)/10$, this result does not occur.

If $b^{4m}-1=l_1^{s_1}l_2^{s_2}l_3^{s_3}l_4^{s_4}$ ($m \ne 1$) is satisfied, from proposition 6.1 and proposition 6.2, then (1.1) has no solutions except the following case:

(6.5)
$$\frac{91^{x_{12}}-1}{2^{y_1}} = \frac{2^{12}-1}{91} = 45.$$

And, if (6.5) is satisfied, we have $x_{12} = O_{45}(91) = 1$. Furthermore $2^{y_1} = \frac{91^1 - 1}{45} = 2^1$, so that $y_1 = 1$ follows. Therefore solution (1.7) is obtained.

> (Received: Sep. 25, 2020) (Accepted: Dec. 7, 2020)

References

- L.J. Mordell: "On the integer solutions of y(y+1) = x(x+1)(x+2)", Pacific J.Math., Vol.13, pp.1347-1351 (1963).
 M. Mignotte and A. Pethö: "On the Diophantine equation x^p x = y^q y", Publ.Math., Vol.43, pp.207-216 (1999).
 M.A. Bennett: "On some exponential equation of S.S.Pillai", Canad. J. Math., Vol.53, pp.897-922 (2001).
 N. Kobachi, Y. Motoda and Y. Yamahata: "On some Diophantine equations (II)", Research Report of NIT Kumamoto College, Vol.9, pp.83-90 (2017).