Regular sequences of power sums in the polynomial ring in three variables

Satoru Isogawa^{1,*}, Tadahito Harima²

In this article, we provide a partial result concerning the conjecture given by Conca, Krattenthaler and Watanabe in (1) on regular sequnce of symmetric polynomials.

Keywords : Regular sequences, Power sums, Resultant of polynomials.

1. Intorduction

In (1), Conca, Krattenthaler and Watanabe stated the following conjecture:

Conjecture 1.1. Any sequence of three power sums $p_a := X^a + Y^a + Z^a$, $p_b := X^b + Y^b + Z^b$ and $p_c := X^c + Y^c + Z^c$, where a, b and c are distinct positive integers with $abc \equiv 0 \pmod{6}$ and gcd(a,b,c) = 1, forms a regular sequence in the polynomial ring K[X,Y,Z] in three variables X, Y and Z over a field K of characteristic zero.

This conjecture has been studied by several authors (e.g., (2)-(5)) and is still an open problem. The purpose of this paper is to prove the following result which gives an affirmative answer to Conjecture 1.1 under some conditions.

Theorem 1.2. If c = 1 and $a = 2^n, 3^n, 5^n, 7^n, 10$ $(n = 1, 2, \dots)$, then Conjecture 1.1 is true.

2. Proof of Theorem 1.2

Let a,b integers with $2 \le a,b$ and $a \ne b$. Since the sequence of three power sums p_a , p_b and $p_1 = X + Y + Z$ is a regular sequence in K[X,Y,Z] if and only if the sequence of two polynomials $(X+Y)^a + (-1)^a (X^a + Y^a)$ and $(X+Y)^{b}+(-1)^{b}(X^{b}+Y^{b})$ is a regular sequence in K[X,Y] if and only if gcd(F,G)=1 in K[X], where $F := (x+1)^a + (-1)^a (x^a+1)$ and $G := (x+1)^b + (-1)^b (x^b+1)$ are polynomials in $\mathbb{Z}[x] \subseteq K[x]$. Therefore, if c = 1, we can reduce Conjecture 1.1 to the following statement:

Conjecture 2.1. If $ab \equiv 0 \pmod{6}$, then gcd(F,G) = 1.

Hence we have only to prove the following proposition:

Prop. 2.2. If $a = 2^n, 3^n, 5^n, 7^n, 10 (n = 1, 2, \dots)$, then Conjecture 2.1 is true.

¹ Faculty of Liberal Studies

²⁶²⁷ Hirayamashinmachi Yatsushiro-shi Kumamoto, Japan 866-8501 2

Department of Mathematics Education, Niigata University

⁸⁰⁵⁰ Ikarashi-2no-chou Nishi-ku Niigata-shi Niigata, Japan 950-2181 Corresponding author:

E-mail address: isogawa@kumamoto-nct.ac.jp (S. Isogawa)

Before going into the proof of this proposition, we need some preparations. We denote the resultant of two polynomials f and g by res(f,g). If $f \in \mathbb{Z}[x]$, then we denote $\overline{f} \in \mathbb{Z}/p\mathbb{Z}[x]$ the image of f in $\mathbb{Z}/p\mathbb{Z}[x]$, where p is a prime number, and let $LC(f) \in \mathbb{Z}$ be the leading coefficient of f.

Lemma. 2.3. Let $f,g \in \mathbb{Z}[x]$ with $\deg f, \deg g \ge 1$. If $\deg f = \deg \overline{f}$ (i.e. $\overline{\mathrm{LC}(f)} \ne 0 \mod p$) and $\deg \overline{g} \ge 1$, then $\operatorname{res}(f,g) \equiv \mathrm{LC}(f)^{\delta} \operatorname{res}(\overline{f},\overline{g}) \mod p$, where $\delta = \deg g - \deg \overline{g}$.

Proof Let denote $f = a_n x^n + \dots + a_0$ and $g = b_m x^m + \dots + b_0$, where deg f = n, deg g = m. By the definition of the resultant,

This implies $\operatorname{res}(f,g) \equiv \operatorname{LC}(f)^{\delta} \operatorname{res}(\overline{f},\overline{g}) \mod p \,. \square$

From Lemma 2.3, we have the following corollary.

Corollary 2.4. Let $f, g \in \mathbb{Z}[x]$. If deg $f = \deg \overline{f} \ge 1$, deg $\overline{g} \ge 1$ and res $(\overline{f}, \overline{g}) \ne 0$, then res $(f, g) \ne 0$.

On the other hand, for two polynomials $f, g \in K[x]$, it is well known that $\operatorname{res}(f,g) \neq 0$ if and only if f and g have no common zeros in \overline{K} the algebraic closure of K if and only if K[x]f + K[x]g = K[x] (i.e. $\operatorname{gcd}(f,g) = 1$) by the Hilbert's Nullstellensatz. Hence we also have the following corollary as a variant of Corollary 2.4.

Corollary 2.5. Let $f,g \in \mathbb{Z}[x] \subseteq K[x]$. If $\deg f = \deg \overline{f} \ge 1$, $\deg \overline{g} \ge 1$ and $\gcd(\overline{f},\overline{g}) = 1$ in $(\mathbb{Z}/p\mathbb{Z})[x]$, then $\gcd(f,g) = 1$ in K[x].

We denote $\binom{n}{r} := \frac{n!}{r!(n-r)!}$ the binomial coefficient with $n \ge r \ge 0$. Let p be a prime number, we denote

 $v_p: \mathbb{Q} \to \mathbb{Z} \cup \{\infty\}$ the *p*-adic valuation. We use the following properties of the *p*-adic valuation:

(0) $v_p(0) = \infty$ (This is a part of the definition of v_p).

(1)
$$v_p(ab) = v_p(a)v_p(b)$$
 and $v_p(a/b) = v_p(a) - v_p(b)$

(2)
$$v_p(a+b) \ge \min\{v_p(a), v_p(b)\}$$
 and $v_p(a+b) = \min\{v_p(a), v_p(b)\}$ if $v_p(a) \ne v_p(b)$.

The following lemma is our key result.

Lemma 2.6. Let n, r integers with $n \ge 1$ and $p^n > r > 0$. Then the following hold:

(1)
$$v_p \begin{pmatrix} p^n \\ r \end{pmatrix} = v_p (p^n) - v_p (r) (= n - v_p (r)).$$

(2) $v_p \begin{pmatrix} p^n \\ r \end{pmatrix} \ge 1.$
(3) $v_p \begin{pmatrix} p^n \\ r \end{pmatrix} = 1$ if and only if $r = ip^{n-1}$ with $i = 1, \dots, p-1.$

(4)
$$\overline{\frac{1}{p}\binom{p^{n}}{ip^{n-1}}} = \frac{\left(-\overline{1}\right)^{i-1}}{\overline{i}} \quad for \ i = 1, \cdots, p-1 \quad in \quad \mathbb{Z}/p\mathbb{Z} \subseteq (\mathbb{Z}/p\mathbb{Z})[x].$$

(5) If
$$a = p^n$$
, then $\overline{\frac{1}{p}((x+1)^a - (x^a+1))} = \left(\sum_{i=1}^{p-1} \frac{(-\overline{1})^{i-1}}{\overline{i}} x^i\right)^{p^{a-1}}$ in $(\mathbb{Z}/p\mathbb{Z})[x]$.

Proof (1) First we remark that $v_p(p^n - i) = \min\{v_p(p^n), v_p(-i)\} = v_p(i)$ for integers $p^n > i > 0$. Hence we have

$$v_{p} \binom{p^{n}}{r} = v_{p} \binom{p^{n} \cdot (p^{n} - 1) \cdots (p^{n} - r + 1)}{r \cdots 1}$$

= $v_{p} (p^{n}) + v_{p} (p^{n} - 1) + \cdots + v_{p} (p^{n} - (r - 1)) - \{v_{p} (1) + \cdots + v_{p} (r - 1) + v_{p} (r)\} = v_{p} (p^{n}) - v_{p} (r).$
(2) Since $p^{n} > r > 0$, we have $v_{p} (r) < n$. By (1), $v_{p} \binom{p^{n}}{r} = n - v_{p} (r) \ge 1.$

(3) Since $v_p \begin{pmatrix} p^n \\ r \end{pmatrix} = n - v_p (r) = 1$, we have $v_p (r) = n - 1$ if and only if $r = ip^{n-1}$ with $i = 1, \dots, p-1$.

(4) If we denote $j = c_j p^{\nu_p(j)}$ for $1 \le j \le p^{n-1} - 1$ and $i = 1, \dots, p-1$, then we have

$$\frac{p^n - j}{j} = \frac{p^{n - \nu_p(j)} - c_j}{c_j} \quad \text{and} \quad \overline{p^{n - \nu_p(j)} - c_j} = -\overline{c_j} \neq 0.$$

Here we remark that for any integers a, b, if $\frac{a}{b}$ is an integer and $\overline{b} \neq 0$, then $\overline{\left(\frac{a}{b}\right)} = \frac{\overline{a}}{\overline{b}}$ in $\mathbb{Z}/p\mathbb{Z} \subseteq (\mathbb{Z}/p\mathbb{Z})[x]$. So, we have

$$\frac{\overline{1}}{p\binom{p^n}{ip^{n-1}}} = \overline{1} \overline{\frac{1}{i}} \prod_{j=1}^{p^{n-1}-1} \frac{(p^n - j)}{j} = \overline{1} \overline{\frac{1}{i}} \prod_{j=1}^{ip^{n-1}-1} \frac{(p^{n-\nu_p(j)} - c_j)}{c_j} = \frac{1}{\overline{i}} \prod_{j=1}^{ip^{n-1}-1} \frac{-\overline{c_j}}{\overline{c_j}} = \frac{(-\overline{1})^{(ip^{n-1}-1)}}{\overline{i}} = \frac{(-\overline{1})^{(i-1)}}{\overline{i}}.$$

(5) By (2) and (3), we have

$$\overline{\frac{1}{p}((x+1)^{a}-(x^{a}+1))} = \sum_{i=1}^{p-1} \frac{1}{p} {p^{n} \choose ip^{n-1}} (x^{i})^{p^{n-1}} \text{ in } (\mathbb{Z}/p\mathbb{Z})[x].$$

Hence, using (4), we have

$$\overline{\frac{1}{p}((x+1)^{a}-(x^{a}+1))} = \sum_{i=1}^{p-1} \frac{(-\overline{1})^{(i-1)}}{\overline{i}} (x^{i})^{p^{n-1}} = \left(\sum_{i=1}^{p-1} \frac{(-\overline{1})^{(i-1)}}{\overline{i}} x^{i}\right)^{p^{n-1}} \text{ in } (\mathbb{Z}/p\mathbb{Z})[x]. \quad \Box$$

Here we start proof of Theorem 1.2 by dividing into five cases. We prove them each after the supportive lemma.

Lemma 2.7. The following hold:

(1) If $a = 2^n$ with an integer $n \ge 1$, then $\overline{\frac{1}{2}F} = (x^2 + x + \overline{1})^{\frac{a}{2}}$ in $(\mathbb{Z}/2\mathbb{Z})[x]$. Especially, $\deg\left(\frac{1}{2}F\right) = \deg\left(\frac{\overline{1}}{2}F\right) = a$. (2) If b = 3m with an integer $m \ge 1$, then $G \equiv 3m'x^{2^{\nu}(3m'-1)} + \cdots \mod 2$ where $m = 2^{\nu}m'$ with m' odd

and $G \equiv 1 \mod (2, x^2 + x + 1)$. Especially, $\deg \overline{G} \ge 1$ and $\gcd \left(\frac{\overline{1}}{2} F, \overline{G} \right) = 1$ in $(\mathbb{Z}/2\mathbb{Z})[x]$.

Proof (1) Since
$$\overline{\frac{1}{2}((x+1)^{a}-(x^{a}+1))} = \overline{\frac{1}{2}((x+1)^{2^{a}}-(x^{2^{a}}+1))} = x^{2^{n-1}} = x^{\frac{a}{2}}$$
 in $(\mathbb{Z}/2\mathbb{Z})[x]$ by Lemma 2.6 (5), we have
 $\overline{\frac{1}{2}F} = \overline{\frac{1}{2}((x+1)^{a}+(x^{a}+1))} = \overline{\left\{\frac{(x+1)^{a}-(x^{a}+1)}{2}+(x^{a}+1)\right\}} = x^{a}+x^{\frac{a}{2}}+\overline{1}=(x^{2}+x+\overline{1})^{\frac{a}{2}}$ in $(\mathbb{Z}/2\mathbb{Z})[x]$.
(2) $G = (x+1)^{3\cdot2^{\nu}m'} + (-1)^{3\cdot2^{\nu}m'}(x^{3\cdot2^{\nu}m'}+1) \equiv (x^{2^{\nu}}+1)^{3m'} - (x^{3\cdot2^{\nu}m'}+1) \equiv 3m'(x^{2^{\nu}})^{3m'-1} + \dots = 3m'x^{2^{\nu}(3m'-1)} + \dots \mod 2$.
Since $x^{2} \equiv x+1 \mod(2, x^{2}+x+1)$ and $x^{3} \equiv 1 \mod(2, x^{2}+x+1)$, we have
 $G = (x+1)^{3m} + (-1)^{3m}(x^{3m}+1) \equiv (x^{2})^{3m} + (x^{3m}+1) \mod(2, x^{2}+x+1)$

$$\equiv 1^{2m} + (1^m + 1) \equiv 1 \mod (2, x^2 + x + 1). \square$$

Proof of Prop. 2.2 for $a = 2^n$:

Since $ab \equiv 0 \pmod{6}$, we can assume that b = 3m with an integer $m \ge 1$. From Lemma 2.7, $\deg\left(\frac{1}{2}F\right) = \deg\left(\frac{1}{2}F\right)$, $\deg\overline{G} \ge 1$ and $\gcd\left(\frac{\overline{1}}{2}F,\overline{G}\right) = 1$ in $(\mathbb{Z}/2\mathbb{Z})[x]$, this implies $\gcd(F,G) = \gcd\left(\frac{1}{2}F,G\right) = 1$ by Corollary 2.5. \Box

Lemma 2.8. The following hold:

(1) If
$$a = 3^n$$
 with $n = 1, 2, \cdots$, then $\frac{1}{3}F = x^{\frac{a}{3}}(x+\overline{1})^{\frac{a}{3}}$ in $(\mathbb{Z}/3\mathbb{Z})[x]$.
(2) If $b = 2m$ with an integer $m \ge 1$, then we have
 $LC(G) \equiv 2 \mod 3$,
 $G = (x+1)^b + (x^b+1) \equiv 2 \mod(3, x)$ and
 $G = (x+1)^b + (x^b+1) \equiv 2 \mod(3, x+1)$.
Especially, $\deg(G) = \deg(\overline{G}) = b$ and $\gcd(\frac{\overline{1}}{3}F, \overline{G}) = 1$ in $(\mathbb{Z}/3\mathbb{Z})[x]$.

Proof (1) Since $\frac{-\overline{1}}{\overline{2}} = \overline{1}$ in $\mathbb{Z}/3\mathbb{Z} \subseteq (\mathbb{Z}/3\mathbb{Z})[x]$, by Lemma 2.6 (5), we have

$$\frac{\overline{1}}{\overline{3}F} = \frac{\overline{1}}{\overline{3}((x+1)^a - (x^a+1))} = \left(\sum_{i=1}^2 \frac{(-\overline{1})^{(i-1)}}{\overline{i}} x^i\right)^{3^{-1}} = \left(\frac{\overline{1}}{\overline{1}}x + \frac{-\overline{1}}{\overline{2}}x^2\right)^{\frac{a}{3}} = x^{\frac{a}{3}}(x+\overline{1})^{\frac{a}{3}} \text{ in } (\mathbb{Z}/3\mathbb{Z})[x].$$

(2) Obviously $LC(G) \equiv 2 \mod 3$. Since $x+1 \equiv x^b+1 \equiv 1 \mod(3, x)$ and $x^b+1 \equiv (-1)^{2m}+1 \equiv 2 \mod(3, x+1)$, we have $G = (x+1)^b + (x^b+1) \equiv 2 \mod(3, x)$ and $G = (x+1)^b + (x^b+1) \equiv 2 \mod(3, x+1)$. \Box

Proof of Prop. 2.2 for $a = 3^n$:

Since $ab \equiv 0 \pmod{6}$, we can assume that b = 2m with an integer $m \ge 1$. From Lemma 2.8, $\deg(G) = \deg(\overline{G})$, $\deg\left(\frac{1}{3}F\right) \ge 1$ and $\gcd\left(\frac{1}{3}F,\overline{G}\right) = 1$ in $(\mathbb{Z}/3\mathbb{Z})[x]$, this implies $\gcd(F,G) = \gcd\left(\frac{1}{3}F,G\right) = 1$ by Corollary 2.5. \Box

Lemma 2.9. The following hold:

(1) If
$$a = 5^n$$
 with $n = 1, 2, \cdots$, then $\overline{\frac{1}{5}F} = x^{\frac{a}{5}} (x^2 + x + \overline{1})^{\frac{a}{5}} (x + \overline{1})^{\frac{a}{5}}$ in $(\mathbb{Z}/5\mathbb{Z})[x]$.

(2) If b = 6m with an integer $m \ge 1$, then we have

$$LC(G) \equiv 2 \mod 5,$$

$$G = (x+1)^{b} + (x^{b}+1) \equiv 2 \mod(5, x),$$

$$G = (x+1)^{b} + (x^{b}+1) \equiv 2 \mod(5, x+1) \text{ and}$$

$$G = (x+1)^{b} + (x^{b}+1) \equiv 3 \mod(5, x^{2}+x+1).$$
Especially, $\deg(G) = \deg(\overline{G}) = b$ and $\gcd\left(\frac{1}{5}F, \overline{G}\right) = 1$ in $(\mathbb{Z}/5\mathbb{Z})[x].$

Proof (1) Since $\frac{-\overline{1}}{\overline{2}} = \overline{2}, \frac{\overline{1}}{\overline{3}} = \overline{2}$ and $\frac{-\overline{1}}{\overline{4}} = \overline{1}$ in $\mathbb{Z}/5\mathbb{Z} \subseteq (\mathbb{Z}/5\mathbb{Z})[x]$, by Lemma 2.6 (5), we have $\frac{\overline{1}}{\overline{5}}F = \left(\frac{\overline{1}}{\overline{1}}x + \frac{-\overline{1}}{\overline{2}}x^2 + \frac{\overline{1}}{\overline{3}}x^3 + \frac{-\overline{1}}{\overline{4}}x^4\right)^{5^{n-1}} = (x + 2x^2 + 2x^3 + x^4)^{\frac{n}{5}} = x^{\frac{n}{5}}(x^2 + x + \overline{1})^{\frac{n}{5}}(x + \overline{1})^{\frac{n}{5}}$ in $(\mathbb{Z}/5\mathbb{Z})[x]$.

(2) Obviously $LC(G) \equiv 2 \mod 5$. Since $x + 1 \equiv x^b + 1 \equiv 1 \mod (5, x)$ and $x^b + 1 \equiv (-1)^{6m} + 1 \equiv 2 \mod (5, x + 1)$, we have

 $G = (x+1)^{b} + (x^{b}+1) \equiv 2 \mod(5, x)$ and $G = (x+1)^{b} + (x^{b}+1) \equiv 2 \mod(5, x+1)$.

Moreover, since $x^3 = 1 \mod (5, x^2 + x + 1)$ and $x + 1 = -x^2 \mod (5, x^2 + x + 1)$, we have $G = (x + 1)^b + (x^b + 1) \equiv (-x^2)^{6m} + (x^{6m} + 1) \equiv 3 \mod (5, x^2 + x + 1)$.

Proof of Prop. 2.2 for $a = 5^n$:

Since $ab \equiv 0 \pmod{6}$, we can assume that b = 6m with an integer $m \ge 1$. From Lemma 2.9, $\deg(G) = \deg(\overline{G}), \deg(\frac{1}{5}F) \ge 1$ and $\gcd(\frac{1}{5}F, \overline{G}) = 1$ in $(\mathbb{Z}/5\mathbb{Z})[x]$, this implies $\gcd(F, G) = \gcd(\frac{1}{5}F, G) = 1$ by Corollary 2.5. \Box

Lemma 2.10. The following hold:

(1) If
$$a = 7^n$$
 with $n = 1, 2, \cdots$, then $\overline{\frac{1}{7}F} = x^{\frac{a}{7}} (x+\overline{1})^{\frac{a}{7}} (x+\overline{3})^{\frac{2a}{7}} (x+\overline{5})^{\frac{2a}{7}}$ in $(\mathbb{Z}/7\mathbb{Z})[x]$.

(2) If b = 6m with an integer $m \ge 1$, then we have

LC(G) = 2 mod 7,
G =
$$(x+1)^{b} + (x^{b}+1) \equiv 2 \mod(7, x),$$

$$G = (x+1)^{b} + (x^{b}+1) \equiv 2 \mod(7, x+1),$$

$$G = (x+1)^{b} + (x^{b}+1) \equiv 3 \mod(7, x+3) \text{ and } G = (x+1)^{b} + (x^{b}+1) \equiv 3 \mod(7, x+5).$$

Especially, $\deg(G) = \deg(\overline{G}) = b$ and $\gcd(\frac{1}{7}F, \overline{G}) = 1$ in $(\mathbb{Z}/7\mathbb{Z})[x].$

Proof (1) Since $\frac{-\overline{1}}{\overline{2}} = \overline{3}, \frac{\overline{1}}{\overline{3}} = \overline{5}, \frac{-\overline{1}}{\overline{4}} = \overline{5}, \frac{\overline{1}}{\overline{5}} = \overline{3}, \frac{-\overline{1}}{\overline{6}} = \overline{1}$ and

$$x\left(x+\overline{1}\right)\left(x+\overline{3}\right)^{2}\left(x+\overline{5}\right)^{2} \equiv x+\overline{3}x^{2}+\overline{5}x^{3}+\overline{5}x^{4}+\overline{3}x^{4}+x^{5} \text{ in } \mathbb{Z}/7\mathbb{Z} \subseteq (\mathbb{Z}/7\mathbb{Z})[x],$$

by Lemma 2.6 (5), we have

$$\overline{\left(\frac{1}{7}F\right)} = \left(x + \overline{3}x^2 + \overline{5}x^3 + \overline{5}x^4 + \overline{3}x^4 + x^5\right)^{7^{n-1}} = x^{\frac{a}{7}} \left(x + \overline{1}\right)^{\frac{a}{7}} \left(x + \overline{3}\right)^{\frac{2a}{7}} \left(x + \overline{5}\right)^{\frac{2a}{7}}.$$

(2) Obviously $LC(G) \equiv 2 \mod 7$ and $G = (x+1)^b + (x^b+1) \equiv 2 \mod(7, x)$. Since $x^b + 1 \equiv (-1)^{6m} + 1 \equiv 2 \mod(7, x+1)$, $(x+1)^b \equiv (5^6)^m \equiv 1 \mod(7, x+3)$, $x^b \equiv (4^3)^{2m} \equiv 1 \mod(7, x+3)$, $(x+1)^b \equiv (3^6)^m \equiv 1 \mod(7, x+5)$ and $x^b \equiv (2^3)^{2m} \equiv 1 \mod(7, x+5)$, we have $G = (x+1)^b + (x^b+1) \equiv 2 \mod(7, x+1)$, $G = (x+1)^b + (x^b+1) \equiv 3 \mod(7, x+3)$ and $G = (x+1)^b + (x^b+1) \equiv 3 \mod(7, x+5)$. \Box

Proof of Prop. 2.2 for $a = 7^n$:

Since $ab \equiv 0 \pmod{6}$, we can assume that b = 6m with an integer $m \ge 1$. From Lemma 2.9, $\deg(G) = \deg(\overline{G}), \ \deg(\overline{\frac{1}{7}F}) \ge 1$ and $\gcd(\overline{\frac{1}{7}F}, \overline{G}) = 1$ in $(\mathbb{Z}/7\mathbb{Z})[x]$, this implies $\gcd(F, G) = \gcd(\overline{\frac{F}{7}}, G) = 1$ by Corollary 2.5. \Box

Lemma 2.11. The following hold:

(1) If a = 10, then $\overline{F} = \overline{2}(x^2 + x + \overline{1})^5$ in $(\mathbb{Z}/5\mathbb{Z})[x]$. Especially, $\deg(F) = \deg(\overline{F}) = 10$.

(2) If b is even, then $G \equiv 2x^b + \dots \mod 5$ and if b is odd, then $G \equiv b'x^{5^v(b'-1)} + \dots \mod 5$ where $b = 5^v b'$ with $\overline{b'} \neq 0$ in $\mathbb{Z} \setminus 5\mathbb{Z}$.

(3) If b = 3m with an integer $m \ge 1$, then $G \equiv 3 \cdot (-1)^b \mod(5, x^2 + x + 1)$. Especially, $\gcd(\overline{F}, \overline{G}) = 1$ in $(\mathbb{Z}/5\mathbb{Z})[x]$.

Proof (1) $F = (x+1)^{10} + (x^{10}+1) \equiv (x^5+1)^2 + (x^{10}+1) \equiv 2(x^{10}+x^5+1) \equiv 2(x^2+x+1)^5 \mod 5$. (2) If *b* is odd, then $G = (x+1)^{5^v b'} - (x^{5^v b'}+1) \equiv (x^{5^v}+1)^{b'} - (x^{5^v b'}+1) \equiv b'(x^{5^v})^{b'-1} + \dots = b'x^{5^v(b'-1)} + \dots \mod 5$. If *b* is even, then the assertion is clear. (3) Since $x^3 \equiv 1$ and $x+1 \equiv -x^2 \mod (5, x^2+x+1)$, we have

$$G = (x+1)^{b} + (-1)^{b} (x^{b}+1) \equiv (-x^{2})^{3m} + (-1)^{3m} (x^{3m}+1) \equiv (-1)^{3m} (x^{6m}+x^{3m}+1) = 3 \cdot (-1)^{b} \mod(5, x^{2}+x+1).$$

Proof of Prop. 2.2 for a = 10:

Since a = 10, we can assume that b = 3m with an integer $m \ge 1$. From Lemma 2.9, $\deg(F) = \deg(\overline{F})$, $\deg(\overline{G}) \ge 1$ and $\gcd(\overline{F},\overline{G}) = 1$ in $(\mathbb{Z}/5\mathbb{Z})[x]$, this implies $\gcd(F,G) = 1$ by Corollary 2.5. \Box

Acknowledgement. This work was supported by Grant-in-Aid for Scientific Research (C) (15K04812).

(Received: Sep. 25, 2018) (Accepted: Dec. 5, 2018)

References

- Aldo Conca, Christian Krattenthaler, and Junzo Watanabe: "Regular sequences of symmetric polynomials", *Rend. Semin. Mat. Univ. Padova*, Vol.121, pp.179-199 (2009).
- (2) Ri-Xiang Chen: "On two classes of regular sequences", J. Commut. Algebra, Vol.8, No.1, pp.29-42 (2016).
- (3) Federico Galetto, Anthony V. Geramita, and David L. Wehlau: "Degrees of regular sequences with a symmetric group action", *arXiv:1610.06610 [math.AC]*, pp.1-14 (2016).
- (4) Neeraj Kumar and Ivan Martino: "Regular sequences of power sums and complete symmetric polynomials", *Matematiche* (*Catania*), Vol.67, No.1, pp. 103-117 (2012).
- (5) Heather Topping: "The zero locus of symmetric polynomials", Master Thesis (Queen's University), pp.1-73 (2017).