Regular sequences of power sums in the polynomial ring in three variables

Satoru Isogawa1,*, Tadahito Harima2

In this article, we provide a partial result concerning the conjecture given by Conca, Krattenthaler and Watanabe in (1) on regular sequence of symmetric polynomials.

Keywords: Regular sequences, Power sums, Resultant of polynomials.

1. Introduction

In (1), Conca, Krattenthaler and Watanabe stated the following conjecture:

Conjecture 1.1. Any sequence of three power sums $p_\alpha := X^\alpha + Y^\alpha + Z^\alpha$, $p_\beta := X^\beta + Y^\beta + Z^\beta$ and $p_\gamma := X^\gamma + Y^\gamma + Z^\gamma$, where α, β and γ are distinct positive integers with $\alpha \beta \gamma \equiv 0 \pmod{6}$ and $\gcd(\alpha, \beta, \gamma) = 1$, forms a regular sequence in the polynomial ring $K[X,Y,Z]$ in three variables X, Y and Z over a field K of characteristic zero.

This conjecture has been studied by several authors (e.g., (2)-(5)) and is still an open problem. The purpose of this paper is to prove the following result which gives an affirmative answer to Conjecture 1.1 under some conditions.

Theorem 1.2. If $c = 1$ and $a = 2^n, 3^n, 5^n, 7^n, 10^n \ (n = 1, 2, \cdots)$, then Conjecture 1.1 is true.

2. Proof of Theorem 1.2

Let a, b integers with $2 \leq a, b$ and $a \neq b$. Since the sequence of three power sums p_α, p_β and $p_\gamma = X + Y + Z$ is a regular sequence in $K[X,Y,Z]$ if and only if the sequence of two polynomials $(X + Y)^\alpha + (X + Y)^\beta$ and $(X + Y)^\gamma$ is a regular sequence in $K[X,Y]$ if and only if $\gcd(F,G) = 1$ in $K[X]$, where $F := (x + 1)^\alpha + (x + 1)^\beta$ and $G := (x + 1)^\gamma$ are polynomials in $\mathbb{Z}[x]\subseteq K[x]$. Therefore, if $c = 1$, we can reduce Conjecture 1.1 to the following statement:

Conjecture 2.1. If $a b \equiv 0 \pmod{6}$, then $\gcd(F,G) = 1$.

Hence we have only to prove the following proposition:

Prop. 2.2. If $a = 2^n, 3^n, 5^n, 7^n, 10^n (n = 1, 2, \cdots)$, then Conjecture 2.1 is true.
Before going into the proof of this proposition, we need some preparations. We denote the resultant of two polynomials \(f \) and \(g \) by \(\text{res}(f, g) \). If \(f \in \mathbb{Z}[x] \), then we denote \(\overline{f} \in \mathbb{Z}/p\mathbb{Z}[x] \) the image of \(f \) in \(\mathbb{Z}/p\mathbb{Z}[x] \), where \(p \) is a prime number, and let \(\text{LC}(f) \in \mathbb{Z} \) be the leading coefficient of \(f \).

Lemma 2.3. Let \(f, g \in \mathbb{Z}[x] \) with \(\deg f, \deg g \geq 1 \). If \(\deg f = \deg \overline{f} \) (i.e. \(\text{LC}(f) \not\equiv 0 \pmod{p} \)) and \(\deg g \geq 1 \), then
\[
\text{res}(f, g) = \text{LC}(f) \delta \text{res}(\overline{f}, \overline{g}) \pmod{p^e},
\]
where \(\delta = \deg g - \deg \overline{g} \).

Proof. Let denote
\[f = a_n x^n + \cdots + a_0 \quad \text{and} \quad g = b_m x^m + \cdots + b_0, \]
where \(\deg f = n \), \(\deg g = m \). By the definition of the resultant,
\[
\text{res}(f, g) = \begin{vmatrix}
\overline{a_n} & \cdots & \overline{a_0} \\
\overline{b_m} & \cdots & \overline{b_0} \\
\vdots & \cdots & \vdots
\end{vmatrix} = (\overline{a_0})^e \text{res}(\overline{f}, \overline{g}).
\]
This implies \(\text{res}(f, g) = \text{LC}(f)^\delta \text{res}(\overline{f}, \overline{g}) \pmod{p^e} \). \(\square \)

From Lemma 2.3, we have the following corollary.

Corollary 2.4. Let \(f, g \in \mathbb{Z}[x] \). If \(\deg f = \deg \overline{f} \geq 1 \), \(\deg \overline{g} \geq 1 \) and \(\text{res}(\overline{f}, \overline{g}) \neq 0 \), then \(\text{res}(f, g) \neq 0 \).

On the other hand, for two polynomials \(f, g \in K[x] \), it is well known that \(\text{res}(f, g) \neq 0 \) if and only if \(f \) and \(g \) have no common zeros in \(K \) if and only if \(K[x]/(f + g) = K[x]/(f \cap g) \) (i.e. \(\text{gcd}(f, g) = 1 \)) by the Hilbert's Nullstellensatz. Hence we also have the following corollary as a variant of Corollary 2.4.

Corollary 2.5. Let \(f, g \in \mathbb{Z}[x] \subseteq K[x] \). If \(\deg f = \deg \overline{f} \geq 1 \), \(\deg \overline{g} \geq 1 \) and \(\text{gcd}(\overline{f}, \overline{g}) = 1 \) in \((\mathbb{Z}/p\mathbb{Z})[x] \), then
\(\text{gcd}(f, g) = 1 \) in \(K[x] \).

We denote \(\binom{n}{r} = \frac{n!}{r!(n-r)!} \) the binomial coefficient with \(n \geq r \geq 0 \). Let \(p \) be a prime number, we denote \(v_p : \mathbb{Q} \to \mathbb{Z}_{\geq 0} \cup \{\infty\} \) the \(p \)-adic valuation. We use the following properties of the \(p \)-adic valuation:

1. \(v_p(0) = \infty \) (This is a part of the definition of \(v_p \)).
2. \(v_p(ab) = v_p(a) + v_p(b) \) and \(v_p(a/b) = v_p(a) - v_p(b) \).
3. \(v_p(a+b) \geq \min\{v_p(a), v_p(b)\} \) and \(v_p(a+b) = v_p(a) + v_p(b) \) if \(v_p(a) \neq v_p(b) \).

The following lemma is our key result.

熊本高等学校 研究紀要 第10号 (2018) —61—
Lemma 2.6. Let \(n, r \) integers with \(n \geq 1 \) and \(p^s > r > 0 \). Then the following hold:

1. \(v_p \left(\frac{p^s}{r} \right) = v_p(p^s) - v_p(r) \left(= n - v_p(r) \right) \).

2. \(v_p \left(\frac{p^s}{r} \right) \geq 1 \).

3. \(v_p \left(\frac{p^s}{r} \right) = 1 \) if and only if \(r = ip^{s-1} \) with \(i = 1, \ldots, p-1 \).

4. \(\frac{1}{p} \left(\frac{p^s}{r} \right) = \frac{(-1)^{s-1}}{r} \) for \(i = 1, \ldots, p-1 \) in \(\mathbb{Z}/p\mathbb{Z} \subseteq (\mathbb{Z}/p\mathbb{Z})[x] \).

5. If \(a = p^s \), then \(\frac{1}{p} \left((x+1)^r - (x^r + 1) \right) \equiv \left(\sum_{i=1}^{s-1} \frac{(-1)^{i-1}}{r} x^i \right)^{s-1} \) in \((\mathbb{Z}/p\mathbb{Z})[x] \).

Proof

(1) First we remark that \(v_p \left(\frac{p^s}{r} - i \right) = \min \left\{ v_p \left(p^s \right), v_p(-i) \right\} = v_p(i) \) for integers \(p^s > i > 0 \). Hence we have

\[
v_p \left(\frac{p^s}{r} \right) = v_p \left(\frac{p^s \cdot (p^s - 1) \cdots (p^s - r + 1)}{p^s - 1} \right) = v_p \left(\frac{p^s}{r} \right) + v_p \left(\frac{p^s - 1}{r} \right) + \cdots + v_p \left(\frac{p^s - (r-1)}{r} \right) = v_p \left(\frac{p^s}{r} \right) - v_p(r).
\]

(2) Since \(p^s > r > 0 \), we have \(v_p(r) < n \). By (1), \(v_p \left(\frac{p^s}{r} \right) = n - v_p(r) \geq 1 \).

(3) Since \(v_p \left(\frac{p^s}{r} \right) = n - v_p(r) = 1 \), we have \(v_p(r) = n - 1 \) if and only if \(r = ip^{s-1} \) with \(i = 1, \ldots, p-1 \).

(4) If we denote \(j = c_i p^{s-1} \) for \(1 \leq j \leq p^{s-1} - 1 \) and \(i = 1, \ldots, p-1 \), then we have

\[
\frac{p^s - j}{p^s - c_i} = \frac{p^{s-1} - c_i}{c_j} \quad \text{and} \quad \frac{p^{s-1} - c_i}{c_j} = -c_j \neq 0.
\]

Here we remark that for any integers \(a, b \), if \(\frac{a}{b} \) is an integer and \(\overline{b} \neq 0 \), then \(\overline{\frac{a}{b}} = \frac{a}{b} \) in \(\mathbb{Z}/p\mathbb{Z} \subseteq (\mathbb{Z}/p\mathbb{Z})[x] \).

So, we have

\[
\frac{1}{p} \left(\frac{p^s}{p^{s-1}} \right) = \frac{1}{p} \left(\prod_{j=1}^{p^{s-1} - 1} \left(\frac{p^s - j}{p^s - c_i} \right) \right) = \frac{1}{p} \left(\prod_{j=1}^{p^{s-1} - 1} \frac{p^{s-1} - c_i}{c_j} \right) = \frac{1}{p} \left(\prod_{j=1}^{p^{s-1} - 1} \frac{(-1)^{j-1}}{r} \right) = \frac{(-1)^{s-1} (x^{s-1})}{r}.
\]

(5) By (2) and (3), we have

\[
\frac{1}{p} \left((x+1)^r - (x^r + 1) \right) \equiv \sum_{i=1}^{s-1} \frac{(-1)^{i-1}}{r} x^i \right)^{s-1} \) in \((\mathbb{Z}/p\mathbb{Z})[x] \).

Hence, using (4), we have

\[
\frac{1}{p} \left((x+1)^r - (x^r + 1) \right) \equiv \sum_{i=1}^{s-1} \frac{(-1)^{i-1}}{r} x^i \right)^{s-1} \) in \((\mathbb{Z}/p\mathbb{Z})[x] \). \(\Box \)

Here we start proof of Theorem 1.2 by dividing into five cases. We prove them each after the supportive lemma.
Lemma 2.7. The following hold:

(1) If \(a = 2^n \) with an integer \(n \geq 1 \), then \(\overline{\frac{1}{2}F} = \left(x^2 + x + 1 \right)^{\frac{n}{2}} \) in \(\left(\mathbb{Z}/2\mathbb{Z} \right)[x] \). Especially, \(\deg \left(\frac{1}{2}F \right) = \deg \left(\overline{\frac{1}{2}F} \right) = a \).

(2) If \(b = 3m \) with an integer \(m \geq 1 \), then \(G = 3m x^{\left(3^{m-1}\right)} + \cdots \mod 2 \) where \(m = 2^m m' \) with \(m' \) odd and \(G \equiv 1 \mod (2, x^2 + x + 1) \). Especially, \(\deg G \geq 1 \) and \(\gcd \left(\overline{\frac{1}{2}F}, G \right) = 1 \) in \(\left(\mathbb{Z}/2\mathbb{Z} \right)[x] \).

Proof (1) Since \(\overline{\left(\frac{1}{2} \right)^n F} = \left(\frac{1}{2} \right)^n \left(x + 1 \right)^n - \left(x^{n+1} + 1 \right) \right) = x^{n+1} = x^2 \) in \(\left(\mathbb{Z}/2\mathbb{Z} \right)[x] \) by Lemma 2.6 (5), we have
\[
\overline{\frac{1}{2}F} = \frac{1}{2} \left(\left(x + 1 \right)^n - \left(x^{n+1} + 1 \right) \right) = x^2 + x + 1 = \left(x^2 + x + 1 \right)^{\frac{n}{2}} \text{ in } \left(\mathbb{Z}/2\mathbb{Z} \right)[x].
\]

(2) \(G = \left(x + 1 \right)^{3^{n-1}} + (-1)^{3^{n-1}} \left(x^{3^{n-1}} + 1 \right) = x^{3^{n-1}} + (x^{3^{n-1}} + 1) = 3m' \left(x^{3^{n-1}} + \cdots + 3m' x^{3^{n-1}} + \cdots \mod 2 \right). \)

Since \(x^2 = x + 1 \mod (2, x^2 + x + 1) \) and \(x^3 = 1 \mod (2, x^2 + x + 1) \), we have
\[
G = \left(x + 1 \right)^{3^{n-1}} + (-1)^{3^{n-1}} \left(x^{3^{n-1}} + 1 \right) = 1^{\frac{n}{2}} + (1^{n+1} + 1) \mod (2, x^2 + x + 1) = 1^{n+1} + 1 \mod (2, x^2 + x + 1). \quad \square
\]

Proof of Prop. 2.2 for \(a = 2^n \):

Since \(ab \equiv 0 \mod 6 \), we can assume that \(b = 3m \) with an integer \(m \geq 1 \). From Lemma 2.7, \(\deg \left(\frac{1}{2}F \right) = \deg \left(\overline{\frac{1}{2}F} \right) \),
\[
\deg G \geq 1 \text{ and } \gcd \left(\overline{\frac{1}{2}F}, G \right) = 1 \text{ in } \left(\mathbb{Z}/2\mathbb{Z} \right)[x], \text{ this implies } \gcd(F, G) = \gcd \left(\overline{\frac{1}{2}F}, G \right) = 1 \text{ by Corollary 2.5}. \quad \square
\]

Lemma 2.8. The following hold:

(1) If \(a = 3^n \) with \(n = 1, 2, \ldots \), then \(\overline{\frac{1}{3}F} = x^\left(\frac{n}{3}\right) \left(x + 1 \right)^{\frac{n}{3}} \) in \(\left(\mathbb{Z}/3\mathbb{Z} \right)[x] \).

(2) If \(b = 2m \) with an integer \(m \geq 1 \), then we have
\[
\text{LC}(G) \equiv 2 \mod 3, \quad G = \left(x + 1 \right)^n + x^{n+1} = 2 \mod (3, x) \quad \text{and} \quad G = \left(x + 1 \right)^n + x^{n+1} = 2 \mod (3, x + 1).
\]

Especially, \(\deg(G) = \deg(G) = b \) and \(\gcd \left(\overline{\frac{1}{3}F}, G \right) = 1 \) in \(\left(\mathbb{Z}/3\mathbb{Z} \right)[x] \).

Proof (1) Since \(\overline{\frac{1}{3}} = \overline{1} \) in \(\mathbb{Z}/3\mathbb{Z} \subseteq \left(\mathbb{Z}/3\mathbb{Z} \right)[x] \), by Lemma 2.6 (5), we have
\[
\overline{\frac{1}{3}F} = \frac{1}{3} \left(\left(x + 1 \right)^n - (x^{n+1}) \right) = \frac{1}{3} \cdot \frac{\left(x - (x^{n+1}) \right)}{\overline{1}} = x^\left(\frac{n}{3}\right) \left(x + 1 \right)^{\frac{n}{3}} \text{ in } \left(\mathbb{Z}/3\mathbb{Z} \right][x].
\]

(2) Obviously \(\text{LC}(G) = 2 \mod 3 \). Since \(x + 1 = x^2 + 1 = 1 \mod (3, x) \) and \(x + 1 = (-1)^n + 1 = 2 \mod (3, x + 1) \), we have
\[
G = \left(x + 1 \right)^n + (x^{n+1}) = 2 \mod (3, x) \quad \text{and} \quad G = (x + 1)^n + (x^{n+1}) = 2 \mod (3, x + 1). \quad \square
\]
Proof of Prop. 2.2 for $a = 3^r$:

Since $ab = 0 \pmod{6}$, we can assume that $b = 2m$ with an integer $m \geq 1$. From Lemma 2.8, $\deg (G) = \deg \left(\frac{1}{3} G \right)$, $\deg \left(\frac{1}{3} F \right) \geq 1$ and $\gcd \left(\frac{1}{3} F, G \right) = 1$ in $(\mathbb{Z}/3\mathbb{Z})[[x]]$, which implies $\gcd (F, G) = \gcd \left(\frac{1}{3} F, G \right) = 1$ by Corollary 2.5. □

Lemma 2.9. The following hold:

(1) If $a = 5^r$ with $n = 1, 2, \cdots$, then $\frac{1}{5} F = \frac{1}{5} \left(x^3 + \frac{x}{3} \right)^{r} \left(x + \frac{x}{3} \right)^{r} \in (\mathbb{Z}/5\mathbb{Z})[[x]]$.

(2) If $b = 6m$ with an integer $m \geq 1$, then we have

\[
\text{LC}(G) = 2 \pmod{5},
\]

\[
G = (x+1)^r + (x^3+1)^r = 2 \pmod{5, x},
\]

$G = (x+1)^r + (x^3+1)^r = 2 \pmod{5, x+1}$ and

\[
G = (x+1)^r + (x^3+1)^r = 3 \pmod{5, x^2+x+1}.
\]

Especially, $\deg (G) = \deg \left(\frac{1}{5} G \right) = b$ and $\gcd \left(\frac{1}{5} F, G \right) = 1$ in $(\mathbb{Z}/5\mathbb{Z})[[x]]$.

Proof (1) Since $\frac{-1}{5} = \frac{2}{3}$ and $\frac{-1}{4} = \frac{4}{3}$ in $\mathbb{Z}/5\mathbb{Z}$, by Lemma 2.6 (5), we have

\[
\frac{1}{5} F = \frac{1}{5} \left(\frac{x}{3} + \frac{x}{2} + \frac{x}{3} + \frac{x}{4} \right) = \left(x + 2x^3 + 2x^3 + x^3 \right)^{r} \left(x + 3 \right)^{r} \left(x + 1 \right)^{r} \in (\mathbb{Z}/5\mathbb{Z})[[x]].
\]

(2) Obviously $\text{LC}(G) = 2 \pmod{5}$. Since $x+1 = x^2+1 = 1 \pmod{(5, x)}$ and $x^3+1 = (-1)^{2m} + 1 = 2 \pmod{(5, x+1)}$, we have

\[
G = (x+1)^r + (x^3+1)^r = 2 \pmod{5, x} \quad \text{and} \quad G = (x+1)^r + (x^3+1)^r = 2 \pmod{5, x+1}.
\]

Moreover, since $x^3 = 1 \pmod{(5, x^2+x+1)}$ and $x+1 = x^2 \pmod{(5, x^2+x+1)}$, we have

\[
G = (x+1)^r + (x^3+1)^r = (-1)^{2m} + (x^{2m}+1) = 3 \pmod{(5, x^2+x+1)}. \quad \square
\]

Proof of Prop. 2.2 for $a = 5^r$:

Since $ab = 0 \pmod{6}$, we can assume that $b = 6m$ with an integer $m \geq 1$. From Lemma 2.9, $\deg (G) = \deg \left(\frac{1}{5} G \right)$, $\deg \left(\frac{1}{5} F \right) \geq 1$ and $\gcd \left(\frac{1}{5} F, G \right) = 1$ in $(\mathbb{Z}/5\mathbb{Z})[[x]]$, which implies $\gcd (F, G) = \gcd \left(\frac{1}{5} F, G \right) = 1$ by Corollary 2.5. □

Lemma 2.10. The following hold:

(1) If $a = 7^r$ with $n = 1, 2, \cdots$, then $\frac{1}{7} F = \frac{1}{7} \left(x^3 + \frac{x}{3} \right)^{r} \left(x^2 + \frac{x}{3} \right)^{r} \left(x + \frac{x}{3} \right)^{r} \left(x + 5 \right)^{r} \in (\mathbb{Z}/7\mathbb{Z})[[x]]$.

(2) If $b = 6m$ with an integer $m \geq 1$, then we have

\[
\text{LC}(G) = 2 \pmod{7},
\]

\[
G = (x+1)^r + (x^3+1)^r = 2 \pmod{(7, x)},
\]

Especially, $\deg (G) = \deg \left(\frac{1}{7} G \right) = b$ and $\gcd \left(\frac{1}{7} F, G \right) = 1$ in $(\mathbb{Z}/7\mathbb{Z})[[x]]$. □
\[G = (x + 1)^3 + (x^3 + 1) = 2 \mod (7, x + 1), \]
\[G = (x + 1)^3 + (x^3 + 1) = 3 \mod (7, x + 3) \quad \text{and} \quad G = (x + 1)^3 + (x^3 + 1) = 3 \mod (7, x + 5). \]

Especially, \(\deg(G) = \deg(\overline{G}) = b \) and \(\gcd\left(\frac{1}{7}F, \frac{1}{7}G\right) = 1 \) in \((\mathbb{Z}/7\mathbb{Z})[x] \).

Proof (1) Since \(\frac{-T}{2} = \frac{-3}{2}, \ \frac{T}{3} = \frac{-3}{3}, \ \frac{-T}{4} = \frac{-3}{3}, \ \frac{-T}{6} = \frac{-3}{3} \) and
\[x(x + 1)\left(x + \frac{3}{3}\right)^2 + x(x + 1)\left(x + \frac{3}{3}\right)^2 = x + \frac{3}{3}x + \frac{3}{3}x + \frac{3}{3}x + x^2 + x^3 \text{ in } \mathbb{Z}/7\mathbb{Z} \triangleq (\mathbb{Z}/7\mathbb{Z})[x], \]
by Lemma 2.6 (5), we have
\[\left(\frac{1}{7}F\right) = \left(x + \frac{3}{3}x + x^3 + x^3 + x^3 + x^3\right)^{n+1} = \left(x + \frac{3}{3}x + x^3 + x^3 + x^3 + x^3\right)^{n+1}. \]

(2) Obviously \(\text{LC}(G) = 2 \mod 7 \) and \(G = (x + 1)^3 + (x^3 + 1) = 2 \mod (7, x) \). Since \(x^3 + 1 = (-1)^{\frac{m}{2}} + 1 = 2 \mod (7, x + 1) \),
\((x + 1)^3 = \left(5^m\right)^n = 1 \mod (7, x + 3) \), \(x^3 = \left(4^m\right)^n = 1 \mod (7, x + 3) \), \((x + 1)^3 = \left(3^m\right)^n = 1 \mod (7, x + 5) \) and
\(x^3 = \left(2^m\right)^n = 1 \mod (7, x + 5) \), we have \(G = (x + 1)^3 + (x^3 + 1) = 2 \mod (7, x + 1) \), \(G = (x + 1)^3 + (x^3 + 1) = 3 \mod (7, x + 3) \) and \(G = (x + 1)^3 + (x^3 + 1) = 3 \mod (7, x + 5) \)

Proof of Prop. 2.2 for \(a = 7^n \):

Since \(ab = 0 \mod 6 \), we can assume that \(b = 6m \) with an integer \(m \geq 1 \). From Lemma 2.9,
\[\deg(G) = \deg(\overline{G}) \quad \text{and} \quad \deg\left(\frac{1}{7}F, \frac{1}{7}G\right) = 1 \text{ in } (\mathbb{Z}/7\mathbb{Z})[x], \]
this implies \(\gcd(F, G) = \gcd\left(\frac{1}{7}F, \frac{1}{7}G\right) = 1 \) by Corollary 2.5.

Lemma 2.11. The following hold:

(1) If \(a = 10 \), then \(F = 2\left(x^2 + x + 1\right)^3 \) in \((\mathbb{Z}/5\mathbb{Z})[x] \). Especially, \(\deg(F) = \deg(\overline{F}) = 10 \).

(2) If \(b \) is even, then \(G = 2x^6 + \cdots \mod 5 \) and if \(b \) is odd, then \(G = b'x^{b'(b'-1)} + \cdots \mod 5 \) where \(b = 5'b' \) with \(\overline{b} \neq 0 \) in \(\mathbb{Z}/5\mathbb{Z} \).

(3) If \(b = 3m \) with an integer \(m \geq 1 \), then \(G = 3\left(-1\right)^m \mod (5, x^2 + x + 1) \). Especially, \(\gcd(F, G) = 1 \) in \((\mathbb{Z}/5\mathbb{Z})[x] \).

Proof (1) \(F = (x + 1)^{10} + (x^{10} + 1) = (x^2 + 1)^3 + (x^{10} + 1) = 2\left(x^6 + x + 1\right)^3 \mod 5 \).

(2) If \(b \) is odd, then \(G = (x + 1)^{b'} - (x^3 + 1)^{b'} = (x^2 + 1)^{b'} - (x^{b'} + 1)^{b'} = b'\left(x^2 + 1\right)^{b'} + \cdots = b'x^{b'(b'-1)} + \cdots \mod 5 \). If \(b \) is even, then the assertion is clear.

(3) Since \(x^3 = 1 \) and \(x + 1 = -x^2 \mod (5, x^2 + x + 1) \), we have
\[G = (x + 1)^3 + (-1)^3 (x^3 + 1)^{m+1} + (-1)^m (x^{3m+1} + 1) = 3\left(-1\right)^m (x^6 + x^{3m} + 1) = 3\left(-1\right)^m \mod (5, x^2 + x + 1). \]

Proof of Prop. 2.2 for \(a = 10 \):

Since \(a = 10 \), we can assume that \(b = 3m \) with an integer \(m \geq 1 \). From Lemma 2.9, \(\deg(F) = \deg(\overline{F}) \), \(\deg(\overline{G}) \geq 1 \) and
\[\gcd(F, G) = 1 \text{ in } (\mathbb{Z}/5\mathbb{Z})[x], \]
this implies \(\gcd(F, G) = 1 \) by Corollary 2.5.
Acknowledgement. This work was supported by Grant-in-Aid for Scientific Research (C) (15K04812).

(Received: Sep. 25, 2018)
(Accepted: Dec. 5, 2018)

References