On Some Diophantine Equations (III)

Nobuo Kobachi

In this paper, we study about the equation $(2^{x_{12}} - 1)/b^{y_1} = (b^{y_{12}} - 1)/2^{x_1} = k$, where b, k are odd. By considering the factorization into prime factors, we find solutions of the equation. In the case of $k = l_1^{s_1}$ and $y_{12} \neq 1$, if b is a prime number, then the equation has two solutions. And if $b = l_3^{s_3} l_4^{s_4}$ is satisfied, then the equation has no solutions. In the case of $k = l_1^{s_1} l_1^{s_2}$ and $x_{12} \equiv 0 \pmod{2}$, if b is a prime number, then the equation has no solutions. In case of $k = l_1^{s_1} l_1^{s_2}$ and $x_{12} \equiv 0 \pmod{2}$, if b is a prime number, then the equation has no solutions. In case of $k = l_1^{s_1} l_1^{s_2}$ and $x_{12} \equiv 0 \pmod{4}$, if $b = l_3^{s_3} l_4^{s_4}$ is satisfied, then the equation has no solutions. In case of $k = l_1^{s_1} l_1^{s_2}$

Keywords : Diophantine equation, Existence of solutions, Factorization into prime factors, Catalan's Theorem

1. INTRODUCTION

Let \mathbb{N} be a set of positive integers. In this paper, we use the following variables:

1) Let $a, b \in \mathbb{N} \setminus \{1\}$, and let $x, x_1, x_2, x_{12}, y, y_1, y_2, y_{12} \in \mathbb{N}$,

2) Let l_1, l_2, l_3, l_4 be distinct odd prime numbers, and let $s_1, s_2, s_3, s_4 \in \mathbb{N}$.

Let $c \in \mathbb{N}$. The equation $a^x - b^y = c$ has been studied by many authors. Especially, in the case of c = 1, the following Catalan's Theorem⁽¹⁾ is well known:

Catalan's Theorem Let x, y > 1. Then equation $a^x - b^y = 1$ has an unique solution $3^2 - 2^3 = 1$.

M.A.Bennett⁽²⁾ shows that the equation $a^x - b^y = c$ has at most two solutions for (x, y). And we know the following eleven cases:

 $3^{1} - 2^{1} = 3^{2} - 2^{3} = 1, \qquad 2^{3} - 3^{1} = 2^{5} - 3^{3} = 5, \qquad 2^{4} - 3^{1} = 2^{8} - 3^{5} = 13, \qquad 2^{3} - 5^{1} = 2^{7} - 5^{3} = 3,$ $(1.1) \qquad 13^{1} - 3^{1} = 13^{3} - 3^{7} = 10, \qquad 91^{1} - 2^{1} = 91^{2} - 2^{13} = 89, \qquad 6^{1} - 2^{1} = 6^{2} - 2^{5} = 4, \qquad 15^{1} - 6^{1} = 15^{2} - 6^{3} = 9,$ $280^{1} - 5^{1} = 280^{2} - 5^{7} = 275, \qquad 4930^{1} - 30^{1} = 4930^{2} - 30^{5} = 4900, \qquad 6^{4} - 3^{4} = 6^{5} - 3^{8} = 1215.$

Furthermore, M.A. Bennett refers to the following conjecture:

Conjecture The equation $a^x - b^y = c$ has at most one solution for (x, y) except eleven cases of (1.1).

Faculty of Liberal Studies

²⁶²⁷ Hirayamashinmachi Yatsushiro-shi Kumamoto, Japan 866-8501

^{*} Corresponding author:

E-mail address: kobachi@kumamoto-nct.ac.jp (Kumamoto Kousen)

Let gcd(a, b) = 1, and let $x_1 < x_2$, $y_1 < y_2$. Then the equation $a^{x_1} - b^{y_1} = a^{x_2} - b^{y_2} = c$ is transformed into the equation

(1.2)
$$\frac{a^{x_{12}}-1}{b^{y_1}}=\frac{b^{y_{12}}-1}{a^{x_1}}=k,$$

where $x_{12} = x_2 - x_1$, $y_{12} = y_2 - y_1$ and k is a suitable positive integer. N.Kobachi, Y.Motoda and Y.Yamahata⁽³⁾ have so far studied the equation (1.2), where a, b are distinct prime numbers, on the cases of k = 1, 2, 3, 4, 5 and prime numbers with $k \ge 7$. Furthermore, in this paper, we study the equation (1.2), where a = 2, on the cases $k = l_1^{s_1}$ and $k = l_1^{s_1} l_2^{s_2}$

2. FACTORIZATION INTO PRIME FACTORS

In this section, we prepare some lemmas.

Lemma 2.1 Suppose $a \ge 3$ and that x is odd with $x \ne 1$.

(1) There exists at least one odd prime number p such that $p \mid (a^x - 1) / (a - 1)$ and $p \nmid a - 1$ are satisfied.

(2) There exists at least one odd prime number p such that $p | (a^x + 1) / (a + 1)$ and $p \nmid a + 1$ are satisfied.

Proof We show the proof of (1) only. The proof of (2) is shown similarly in the case of (1).

We remark that $a-1 < (a^x-1)/(a-1)$ and $(a^x-1)/(a-1)$ is odd.

Now, put $K = \gcd\{(a^x - 1)/(a - 1), a - 1\}$. If K = 1 is satisfied then the result of (1) follows. After this, we suppose K is odd with $K \ge 3$. From K | a - 1, $a \equiv 1 \pmod{K}$ is obtained. Thus $(a^x - 1)/(a - 1) \equiv x \pmod{K}$ follows. Furthermore, from $K | (a^x - 1)/(a - 1)$, K | x is satisfied. This leads $a^K - 1 | a^x - 1$.

And, from $a \equiv 1 \pmod{K}$, there is a positive integer A such that a = KA + 1. Therefore $a^{K} - 1 = \sum_{j=1}^{K} C_{j}(KA)^{j}$, and so

(2.1)
$$\frac{1}{K} \cdot \frac{a^{K} - 1}{a - 1} = 1 + KA \left\{ \frac{K - 1}{2} + A \sum_{j=3}^{K} C_{j} (KA)^{j-3} \right\}$$

follows. Let $m \in \mathbb{N}$ and let $t_i \in \mathbb{N}$. If K is factorized by m distinct odd prime numbers p_j , that is $K = \prod_{j=1}^{m} p_j^{t_j}$, then we have $(a^K - 1) / K(a - 1) \equiv 1 \pmod{p_j}$ for $j = 1, \dots, m$. Thus, from $a^K - 1 | a^X - 1$, the result of (1) follows.

Lemma 2.2 Suppose $a \ge 3$ and that x is odd with $x \ne 1$.

(1) If a-1 is factorized by *m* distinct prime numbers, then $a^x - 1$ contains at least m+1 distinct prime numbers as the factor.

(2) If a+1 is factorized by *m* distinct prime numbers, then a^x+1 contains at least m+1 distinct prime numbers as the factor.

- (3) If $a^2 1$ is factorized by *m* distinct prime numbers, then $a^{2x} 1$ contains at least m + 2 distinct prime numbers as the factor.
- **Proof** From Lemma 2.1, the results (1) and (2) are clear. We show the proof of (3) only.

From (1) of Lemma 2.1, there is at least one odd prime p such that $p | (a^x - 1)/(a - 1)$ and $p \nmid a - 1$ are satisfied. If $p | a^x + 1$, then we have a contradiction to $gcd(a^x + 1, a^x - 1) = gcd(2, a^x - 1) = 1$ or 2. Thus $p \nmid a^x + 1$ follows. Similarly,

from (2) of Lemma 2.1, there is at least an odd prime q such that $q | (a^x + 1) / (a + 1)$ and $q \nmid a + 1$ are satisfied. Furthermore $q \nmid a^x - 1$ follows. That is $p \neq q$ and p, $q \nmid a^2 - 1$. Thus, from the equation

(2.2)
$$a^{2x} - 1 = (a^{x} - 1)(a^{x} + 1) = \left\{ (a - 1)\left(\frac{a^{x} - 1}{a - 1}\right) \right\} \left\{ (a + 1)\left(\frac{a^{x} + 1}{a + 1}\right) \right\} = (a^{2} - 1)\left(\frac{a^{x} - 1}{a - 1}\right)\left(\frac{a^{x} + 1}{a + 1}\right),$$

we can obtain the result (3).

Lemma 2.3 If $b = 2^{4m+1} + 1$ is satisfied, then the equation $b^2 + 1 = 2^x \cdot l_1^{s_1}$ has no solutions.

Proof Put $A = 2^{4m}$. Then we have

(2.3)
$$2^{x} \cdot l_{1}^{s_{1}} = (2A+1)^{2} + 1 = 2(2A^{2}+2A+1).$$

Thus x = 1 and $l_1^{s_1} = 2A^2 + 2A + 1$ is obtained. And, from $A = 16^m \equiv 1 \pmod{5}$, $l_1^{s_1} \equiv 0 \pmod{5}$ follows. That is $l_1 = 5$. Therefore $5^{s_1} = 2A^2 + 2A + 1$ is satisfied. Then we remark that $A \ge 16$ leads $s_1 \ge 3$. Then we have

(2.4)
$$5^{2}(5^{s_{1}-2}-1) = 2A^{2} + 2A - 24 = 2(A+4)(A-3) = 2^{3}(2^{4m-2}+1)(2^{4m}-3).$$

Thus $8 \mid 5^{s_1-2} - 1$ and so $s_1 - 2$ is even. That is $3 \mid 5^{s_1-2} - 1$. Therefore $2A^2 + 2A - 24 \equiv 0 \pmod{3}$ follows. On the other hand, from $A \equiv 1 \pmod{3}$, $2A^2 + 2A - 24 \equiv 1 \pmod{3}$ follows. Thus we have a contradiction.

Lemma 2.4 We have the following result:

(1) If x is odd with $x \ge 5$, then $2^x + 1$ has an odd prime number p other than 3 and 3 as the factor.

(2) If x is even with $x \ge 4$, then $2^x - 1$ has an odd prime number p other than 3 and 3 as the factor.

Proof (1) Since x is odd, $3 | 2^x + 1$ follows. If $2^x + 1 = 3^y$ is satisfied, from Catalan's Theorem, then there are only two solutions (x, y) = (1, 1), (3, 2). Thus we have a contradiction to $x \ge 5$.

(2) Since x is even, $3 | 2^x - 1$ follows. If $2^x - 1 = 3^y$ is satisfied, from Catalan's Theorem, then there is an unique solution (x, y) = (2, 1). Thus we have a contradiction to $x \ge 4$.

Lemma 2.5 Let $x_1 < x_2$. Then $x_2 \equiv 0 \pmod{2}$ and $x_1 \mid x_2 \mid 2$ follow if and only if $2^{x_1} + 1 \mid 2^{x_2} - 1$ is satisfied.

Proof Let *R* be the remainder of $(2^{x_2} - 1)/(2^{x_1} + 1)$, and let *m* be the quotient of x_2/x_1 . Then the relation $R = (-1)^m \cdot 2^{x_2 - mx_1} - 1$ follows. Therefore $m \equiv 0 \pmod{2}$ and $x_2 = mx_1$ if and only if R = 0 is satisfied. Thus the proof is completed.

Remark 2.6 Similarly, we have the following results:

(1) Let $x_1 \le x_2$. Then $x_1 \mid x_2$ follows if and only if $2^{x_1} - 1 \mid 2^{x_2} - 1$ is satisfied.

(2) Let $x_1 \le x_2$. Then $x_2 \equiv 1 \pmod{2}$ and $x_1 \mid x_2$ follows if and only if $2^{x_1} + 1 \mid 2^{x_2} + 1$ is satisfied.

(3) Let $x_1 \le x_2$. Then $x_2 \equiv 1 \pmod{2}$ and $x_1 = 2$ follows if and only if $2^{x_1} - 1 | 2^{x_2} + 1$ is satisfied.

3. FACTORIZATION ON $2^{2x} - 1$

In this section, we consider the factorization on $2^{2x} - 1$. And we treat the following three cases:

$$2^{2x} - 1 = l_1^{s_1} \cdot l_2^{s_2}, \qquad \qquad 2^{2x} - 1 = l_1^{s_1} \cdot l_2^{s_2} \cdot l_3^{s_3}, \qquad \qquad 2^{2x} - 1 = l_1^{s_1} \cdot l_2^{s_2} \cdot l_3^{s_3} \cdot l_4^{s_4}.$$

Lemma 3.1 Let $k \in \mathbb{N}$. The system of equations $\begin{cases} 2^x - 1 = 1 \\ 2^x + 1 = k \end{cases}$ has no solutions except k = 3.

Proof From $k = (2^{x} - 1) + 2 = 3$, it is clear.

Lemma 3.2 Let $k \in \mathbb{N}$. The system of equations $\begin{cases} 2^x - 1 = 3^y \\ 2^x + 1 = k \end{cases}$ has no solutions except k = 5.

Proof From the Catalan's Theorem, the equation $2^x - 1 = 3^y$ has an unique solution (x, y) = (2, 1). Thus $k = 2^2 + 1 = 5$ follows. The proof is completed.

Lemma 3.3 Let $k \in \mathbb{N}$. The system of equations $\begin{cases} 2^{x} - 1 = k \\ 2^{x} + 1 = 3^{y} \end{cases}$ has no solutions except k = 1, 7. Proof From Catalan's Theorem, the equation $2^{x} + 1 = 3^{y}$ has only two solutions (x, y) = (1, 1), (3, 2). Thus, as x = 1, 3, k = 1, 7 follows respectively. The proof is completed.

Proposition 3.4 The equation $2^{2x} - 1 = l_1^{s_1} \cdot l_2^{s_2}$ has two solutions

$$2^4 - 1 = 3^1 \cdot 5^1$$
, $2^6 - 1 = 3^2 \cdot 7^1$.

Proof From Lemma 3.1, we have $1 < 2^x - 1 < 2^x + 1 < l_1^{s_1} \cdot l_2^{s_2}$. Furthermore, from $gcd(2^x - 1, 2^x + 1) = 1$, we may suppose that both $2^x - 1 = l_1^{s_1}$ and $2^x + 1 = l_2^{s_2}$ are satisfied. Then, from $3 | 2^{2x} - 1$, Either $l_1 = 3$ or $l_2 = 3$ follows. Thus, from Lemma 3.2 and Lemma 3.3, The result is obtained.

Lemma 3.5 Let $l_1, l_2 > 3$. If $2^{2x} - 1 = 3^y \cdot l_1^{s_1} \cdot l_2^{s_2}$, then either of the following system of equations is satisfied:

Proof From Lemma 3.1, we have $1 < 2^x - 1 < 2^x + 1 < 3^y \cdot l_1^{s_1} \cdot l_2^{s_2}$. Furthermore, from Lemma 3.2 and Lemma 3.3, the following two systems of equations are not satisfied:

Thus the proof is completed.

Lemma 3.6 Let $k \in \mathbb{N}$. The system of equations $\begin{cases} 2^x - 1 = 3^y \cdot l_1^{s_1} \\ 2^x + 1 = k \end{cases}$ has no solutions except k = 17, 65.

Proof From $3 | 2^x - 1$, x is even. Therefore, from Proposition 3.4, there are only two solutions $2^4 - 1 = 3^1 \cdot 5^1$ and

 $2^6 - 1 = 3^2 \cdot 7^1$ on the equation $2^x - 1 = 3^y \cdot l_1^{s_1}$. For each solutions, k = 17, 65 follows.

Lemma 3.7 Let $k \in \mathbb{N} \setminus \{1\}$ and $l_2 > 3$. If the system of equations $\begin{cases} 2^x - 1 = l_2^{s_2} \\ 2^x + 1 = 3^y \cdot k \end{cases}$ has solutions, then the following results are

satisfied: (1) y = 1, $s_2 = 1$, (2) l_2 is a Mersenne prime number with $l_2 \ge 31$.

Proof From $3 | 2^x + 1$, x is odd. Furthermore, when x = 1, 3 is satisfied, $3^y \cdot k = 3$, 9 follows respectively. Thus we have a contradiction. After this, we suppose that x is odd with $x \ge 5$. Then, from Catalan's Theorem, both $s_2 = 1$ and $l_2 = 2^x - 1$ follow. Thus l_2 is a Mersenne prime number with $l_2 \ge 31$. Furthermore, since x is at least an odd prime number with $x \ge 5$, $y = v_3(2^x + 1) = v_3(3) + v_3(x) = 1 + 0 = 1$ follows, where notation $v_p(\cdot)$ is s p-adic valuation.

We consider solutions of the equation $2^{2x} - 1 = l_1^{s_1} \cdot l_2^{s_2} \cdot l_3^{s_3}$

- **Proposition 3.8** We have the following results:
 - (1) Suppose that x is even. Then there is an unique solution $2^8 1 = 3^1 \cdot 5^1 \cdot 17^1$.
 - (2) Suppose that x is odd. Let M be a Mersenne prime with $M \ge 31$. If there exists an odd prime p and a positive
 - integer t such that $p^t = (M+2)/3$ follows, there is a solution $2^{2m} 1 = 3^1 \cdot M^1 \cdot p^t$, where $m = v_2(M+1)$, for M.

Proof From $3 | 2^{2x} - 1$, we may put $l_3 = 3$ and $s_3 = y$. Thus, from Lemma 3.5, either of the following system of equations is satisfied:

(1) Suppose that x is even. Then we have $\begin{cases} 2^{x} - 1 = 3^{y} \cdot l_{1}^{s_{1}} \\ 2^{x} + 1 = l_{2}^{s_{2}} \end{cases}$. Thus, from Lemma 3.6, the result is obtained. (2) Suppose that x is odd. Then we have $\begin{cases} 2^{x} + 1 = 3^{y} \cdot l_{1}^{s_{1}} \\ 2^{x} - 1 = l_{2}^{s_{2}} \end{cases}$. Thus, from Lemma 3.7, the result is obtained.

Proposition 3.9 The equation $2^{4x} - 1 = l_1^{s_1} \cdot l_2^{s_2} \cdot l_3^{s_3} \cdot l_4^{s_4}$ has two solutions

$$2^{12} - 1 = 3^1 \cdot 5^1 \cdot 7^1 \cdot 13^1 , \qquad \qquad 2^{16} - 1 = 3^1 \cdot 5^1 \cdot 17^1 \cdot 257^1 .$$

Proof From Lemma 3.1 and $gcd(2^{2x} - 1, 2^{2x} + 1) = 1$, we have $1 < 2^{2x} - 1 < 2^{2x} + 1 < l_1^{s_1} \cdot l_2^{s_2} \cdot l_3^{s_3} \cdot l_4^{s_4}$. And, from $3 \mid 2^{2x} - 1$, we may put $l_4 = 3$ and $s_4 = y$. Furthermore, from Lemma 3.2, either of the following system of equations is satisfied:

$$\begin{cases} 2^{2x} - 1 = 3^{y} \cdot l_{1}^{s_{1}} \\ 2^{2x} + 1 = l_{2}^{s_{2}} \cdot l_{3}^{s_{3}} \end{cases}, \qquad \qquad \begin{cases} 2^{2x} - 1 = 3^{y} \cdot l_{1}^{s_{1}} \cdot l_{2}^{s_{2}} \\ 2^{2x} + 1 = l_{3}^{s_{3}} \end{cases}$$

Suppose $\begin{cases} 2^{2x} - 1 = 3^{y} \cdot l_{1}^{s_{1}} \\ 2^{2x} + 1 = l_{2}^{s_{2}} \cdot l_{3}^{s_{1}} \end{cases}$ From Lemma 3.6, There is an unique solution $\begin{cases} 2^{6} - 1 = 3^{3} \cdot 7^{1} \\ 2^{6} + 1 = 5^{1} \cdot 13^{1} \end{cases}$ Suppose $\begin{cases} 2^{2x} - 1 = 3^{y} \cdot l_{1}^{s_{1}} \cdot l_{2}^{s_{2}} \\ 2^{2x} + 1 = l_{3}^{s_{3}} \end{cases}$ If x is even, form Proposition 3.8, There is an unique solution $\begin{cases} 2^{8} - 1 = 3^{1} \cdot 5^{1} \cdot 17^{1} \\ 2^{8} + 1 = 257^{1} \end{cases}$ If x is odd, then $5 \mid 2^{x} + 1 = a$ and so $l_{3} = 5$ follows. Furthermore, from Catalan's Theorem, the equation $2^{2x} + 1 = 5^{s_{3}}$ has an unique solution $(x, s_{3}) = (1, 1)$. Then $3^{y} \cdot l_{1}^{s_{1}} \cdot l_{2}^{s_{2}} = 2^{2} - 1 = 3$ follows. Thus we have a contradiction.

4. FACTORIZATION ON $b^{2y}-1$

Let b be odd. In this section, we consider the factorization on $b^y - 1$. And we treat the following two cases:

$$b^{2x} - 1 = 2^x \cdot l_1^{s_1}, \qquad b^{2y} - 1 = 2^x \cdot l_1^{s_1} \cdot l_2^{s_2}.$$

Lemma 4.1 Let $k \in \mathbb{N} \setminus \{1\}$ and $x \ge 3$. The system of equations $\begin{cases} b^y - 1 = 2 \\ b^y + 1 = 2^{x-1} \cdot k \end{cases}$ has no solutions.

Proof From $2^{x-1} \cdot k = (b^i - 1) + 2 = 4$, it is clear.

We consider solutions of the equation $b^{2y} - 1 = 2^x \cdot l_1^{s_1}$, where y is even.

Proposition 4.2 We have the following results:

(1) Suppose that b is a prime number. Then there are only four solutions

 $5^2 - 1 = 2^3 \cdot 3^1$, $3^4 - 1 = 2^4 \cdot 5^1$, $17^2 - 1 = 2^5 \cdot 3^2$, $7^2 - 1 = 2^4 \cdot 3^1$.

(2) Suppose that b contains at least two distinct odd prime numbers. Then, if l_1 is either a Fermat prime number F with $F \ge 17$ or a Mersenne prime number M_0 with $M_0 \ge 7$, There is only one solution $b^2 - 1 = 2^{r+2} \cdot l_1^{-1}$, where $b = 2l_1 - 1$, $r = v_2(l_1 - 1)$ as $l_1 = F$ or $b = 2l_1 + 1$, $r = v_2(l_1 + 1)$ as $l_1 = M_0$.

Proof We remark that $8 | b^2 - 1$ leads $x \ge 3$. From Lemma 4.1 and $gcd(b^y - 1, b^y + 1) = 2$, we have $2 < b^y - 1 < b^y + 1 < 2^x \cdot l_1^{s_1}$. Therefore, either of the following two systems of equations follows:

(4.1)
$$\begin{cases} b^{y} - 1 = 2^{x-1} \\ b^{y} + 1 = 2l_{1}^{s_{1}} \end{cases}$$

(4.2)
$$\begin{cases} b^{y} + 1 = 2^{x-1} \\ b^{y} - 1 = 2l_{1}^{s_{1}} \end{cases}$$

First, we consider the case of (4.1).

If x = 3 is satisfied, then $b^y = 2^2 + 1 = 5$ and so b = 5, y = 1 are obtained. Furthermore, from $l_1^{s_1} = (5^1 + 1)/2 = 3$, we have $l_1 = 3$ and $s_1 = 1$. Thus $5^2 - 1 = 2^3 \cdot 3^1$ follows.

If x = 4 is satisfied, then $b^y = 2^3 + 1 = 9$ and so b = 3, y = 2 are obtained. Furthermore, from $l_1^{s_1} = (3^2 + 1)/2 = 5$, we have $l_1 = 5$ and $s_1 = 1$. Thus $3^4 - 1 = 2^4 \cdot 5^1$ follows.

If x = 5 is satisfied, then $b^y = 2^4 + 1 = 17$ and so b = 17, y = 1 are obtained. Furthermore, from $l_1^{s_1} = (17^1 + 1)/2 = 9$, we have $l_1 = 3$ and $s_1 = 2$. Thus $17^4 - 1 = 2^5 \cdot 3^2$ follows.

Suppose $x \ge 6$. From Catalan's Theorem, y = 1, $b = 2^{x-1} + 1$ are obtained. Furthermore we have $l_1^{s_1} = 2^{x-2} + 1$. And, from Catalan's Theorem, $s_1 = 1$, $l_1 = 2^{x-2} + 1$ are obtained. Thus l_1 is a Fermat prime number F with $F \ge 17$. We remark that x is even at least. Then we have $b = 2^{x-1} + 1 = 2F - 1$. And, from Lemma 2.4, b has an odd prime number p other than 3 and 3 as the factor.

Next, we consider the case of (4.2).

If x=3, then $b^y = 2^2 - 1 = 3$ and so b=3, y=1 are obtained. Hence $l_1^{s_1} = (3^1 - 1)/2 = 1$ follows. Thus we have a contradiction.

If x = 4, then $b^y = 2^3 - 1 = 7$ and so b = 7, y = 1 are obtained. Furthermore, from $l_1^{s_1} = (7^1 - 1)/2 = 3$, we have $l_1 = 3$ and $s_1 = 1$. Thus $7^2 - 1 = 2^4 \cdot 3^1$ follows.

Suppose $x \ge 5$. From Catalan's Theorem, y = 1, $b = 2^{x-1} - 1$ are obtained. Furthermore we have $l_1^{s_1} = 2^{x-2} - 1$. And, from Catalan's Theorem, $s_1 = 1$, $l_1 = 2^{x-2} - 1$ are obtained. Thus l_1 is a Mersenne prime number M_0 with $M_0 \ge 7$. We remark that x is odd at least. Then we have $b = 2^{x-1} - 1 = 2M_0 + 1$. And, from Lemma 2.4, b has an odd prime number p other than 3 and 3 as the factor.

Lemma 4.3 Suppose that y is even. The system of equations $\begin{cases} b^{y} - 1 = 2^{x-1} \\ b^{y} + 1 = 2 \cdot l_{1}^{s_{1}} \cdot l_{2}^{s_{2}} \end{cases}$ has no solutions.

Proof Since y is even, we have $y \ge 2$ and $x \ge 4$. From Catalan's Theorem, The equation $b^y - 1 = 2^{x-1}$ has an unique solution $3^2 - 1 = 2^3$. Thus b = 3, y = 2 and x = 4 follow. Therefore $2 \cdot l_1^{s_1} \cdot l_2^{s_2} = 3^2 + 1 = 10$ is obtained. Thus we have a contradiction.

We consider solutions of equation $b^{2y} - 1 = 2^x \cdot l_1^{s_1} \cdot l_2^{s_2}$, where y is even.

Proposition 4.4 We have the following results:

(1) Suppose that b is a prime number. Then there are only three solutions

$$5^{4} - 1 = 2^{4} \cdot 3^{1} \cdot 13^{1}, \qquad \qquad 3^{8} - 1 = 2^{5} \cdot 5^{1} \cdot 41^{1}, \qquad \qquad 7^{4} - 1 = 2^{5} \cdot 3^{1} \cdot 5^{2}.$$

(2) Suppose that b contains at least two distinct odd prime numbers. Then, let M_0 be a Mersenne prime with $M_0 \ge 7$.

And, put $b = 2M_0 + 1$, $r = v_2(M_0 + 1)$. If there exist an odd prime number p and a positive integer t such that

 $p^{t} = (b^{2} + 1)/2$, There is only one solution $b^{4} - 1 = 2^{r+3} \cdot M_{0}^{-1} \cdot p^{t}$.

Proof We remark that $8 | b^2 - 1$ leads $x \ge 3$. From Lemma 4.1 and $gcd(b^y - 1, b^y + 1) = 2$, we have $2 < b^y - 1 < b^y + 1 < 2^{x-1} \cdot l_1^{s_1}$. And, Since $y \equiv 0 \pmod{2}$ leads $8 | b^y - 1$, The system of equations $\begin{cases} b^y - 1 = 2 \cdot l_1^{s_1} \\ b^y + 1 = 2^{x-1} \cdot l_2^{s_2} \end{cases}$ dose not

occur. Therefore, from Lemma 4.3, the system of equations $\begin{cases} b^{y} - 1 = 2^{x-1} \cdot l_{1}^{s_{1}} \\ b^{y} + 1 = 2 \cdot l_{2}^{s_{2}} \end{cases}$ is satisfied.

(1) From Proposition 4.2, We have the following results.

If $5^2 - 1 = 2^3 \times 3^1$ is satisfied, then $l_2^{s_2} = (5^2 + 1)/2 = 13$. That is $l_2 = 13$, $s_2 = 1$.

If $3^4 - 1 = 2^4 \times 5^1$ is satisfied, then $l_2^{s_2} = (3^4 + 1)/2 = 41$. That is $l_2 = 41$, $s_2 = 1$

If $17^2 - 1 = 2^5 \times 3^2$ is satisfied, then $l_2^{s_2} = (17^2 + 1)/2 = 145$. Thus we have a contradiction to a prime number l_2 .

If $7^2 - 1 = 2^4 \times 3^1$ is satisfied, then $l_2^{s_2} = (7^2 + 1)/2 = 25$. That is $l_2 = 5$, $s_2 = 2$

(2) Let F be a Fermat prime number with $F \ge 17$. Then there exists a positive number n with $n \ge 2$ such that $F = 2^{2^n} + 1$ follows. And, if we put $b = 2F - 1 = 2^{2^n+1} + 1$, from Lemma 2.3, the equation $b^2 + 1 = 2 \cdot l_1^{s_1}$ has no solutions.

From Proposition 4.2, we may put $l_1 = F$ or $l_1 = M_0$. But the relation $l_1 = F$ does not occur for the reasons mentioned above. When $l_1 = M_0$ is satisfied, we put $b = 2M_0 + 1$, $r = v_2(M_0 + 1)$. Then we have $b^2 - 1 = 2^{r+2} \cdot M_0^{-1}$. Thus, if there exist an odd prime number p and a positive integer t such that $p' = (b^2 + 1)/2$, there is only one solution $b^4 - 1 = 2^{r+3} \cdot M_0^{-1} \cdot p^t$.

We consider solutions of equation $b^{2y} - 1 = 2^x \cdot l_1^{s_1} \cdot l_2^{s_2}$, where y is odd.

Lemma 4.5 $y \neq 1$ if and only if b = 3.

Proof Suppose y = 1. If b = 3, then $2^x \cdot l_1^{s_1} \cdot l_2^{s_2} = 3^2 - 1 = 8$. Thus we have a contradiction. Therefore $b \neq 3$ leads. If $y \neq 1$ is satisfied, from Lemmma 2.2, $b^2 - 1 = 2^x$ follows. And, from $8 | b^2 - 1$, $x \ge 3$ is satisfied. Thus, from Catalan's Theorem, b = 3 leads.

5. MAIN RESULTS

Let F be a Fermat prime number with $F \ge 17$. And let M, M_0 be a Mersenne prime number with $M \ge 31, M_0 \ge 7$.

Let b be odd, and let k be a positive integer. In this section, we consider the equation $(2^{x_{12}} - 1)/b^{y_1} = (b^{y_{12}} - 1)/2^{x_1} = k$.

We consider solutions of the equation $\frac{2^{x_{12}}-1}{b^{y_1}} = \frac{b^{y^{12}}-1}{2^{x_1}} = l_1^{s_1}$, where $y_{12} \neq 1$

Theorem 5.1 We have the following results:

(1) If *b* is an odd prime number, there are only two solutions $\frac{2^4 - 1}{5^1} = \frac{5^2 - 1}{2^3} = 3^1$ and $\frac{2^4 - 1}{3^1} = \frac{3^4 - 1}{2^4} = 5^1$.

(2) If $b = l_2^{s_2} \cdot l_3^{s_3}$ follows, There is no solution.

Proof First, we suppose that y_{12} is even.

If b is an odd prime number, from Proposition 4.2, the equation $b^{y_{12}} - 1 = 2^{x_1} \cdot l_1^{x_1}$ has only four solutions;

$$5^{2} - 1 = 2^{3} \cdot 3^{1}$$
, $3^{4} - 1 = 2^{4} \cdot 5^{1}$, $17^{2} - 1 = 2^{5} \cdot 3^{2}$, $7^{2} - 1 = 2^{4} \cdot 3^{1}$.

Thus we obtain either b = 3 or $l_1 = 3$. Therefore, from the other equation $2^{x_{12}} - 1 = b^{y_1} \cdot l_1^{x_1}$, $3 \mid 2^{x_{12}} - 1$ and so x_{12} is even. Hence, from Proposition 3.4, both $5^2 - 1 = 2^3 \cdot 3^1$ and $3^4 - 1 = 2^4 \cdot 5^1$ lead $2^4 - 1 = 5^1 \cdot 3^1$. Furthermore, $2^{x_{12}} - 1 = b^{y_1} \cdot l_1^{x_1}$ has no solution for $17^2 - 1 = 2^5 \cdot 3^2$ and $7^2 - 1 = 2^4 \cdot 3^1$.

If $b = l_2^{s_2} \cdot l_3^{s_3}$ follows, from Proposition 4.2, then either $l_1 = F$ or $l_1 = M_0$ is satisfied. Furthermore $s_1 = 1$ follows. Now, we put b = 2F - 1 or $b = 2M_0 + 1$ for each case. Then, from Lemma 2.4, b has an odd prime number p other than 3 and 3 as the factor. Thus $3 \mid 2^{s_{12}} - 1$ and so x_{12} is even. If $x_{12} \equiv 0 \pmod{4}$ follows, from Proposition 3.8, the equation $2^{s_{12}} - 1 = b^{y_1} \cdot l_1^{-1}$ has an unique solution $2^8 - 1 = 3^1 \cdot 5^1 \cdot 17^1$. This leads $b = 3^1 \cdot 5^1 = 15$, $l_1 = F = 17$. Thus we have a contradiction to b = 2F - 1. Therefore $x_{12} \equiv 2 \pmod{4}$ is satisfied. Let $t \in \mathbb{N}$. Then, from Proposition 3.8, if the equation $2^{s_{12}} - 1 = b^{y_1} \cdot l_1^{-1}$ has solutions, either $l_1 = F = (M + 3)/2$, $b^{y_1} = 3^1 \cdot M^1$ or $l_1 = M_0 = M$, $b^{y_1} = 3^1 \cdot p^t = M + 2$ or $l_1 = M_0 = (M + 3)/2$,

-56-

 $b^{y_1} = 3^1 \cdot M^1$ follows. We remark that $b^{y_1} = 3^1 \cdot M^1$ or $b^{y_1} = 3^1 \cdot p^t$ leads $y_1 = 1$ each other.

- If $l_1 = F$ then $3M = b = 2F 1 = 2\{(M+3)/2\} 1 = M + 2$, and so M = 1 follows. Thus we have a contradiction.
- If $l_1 = M_0 = M$ then M + 2 = b = 2M + 1, and so M = 1 follows. Thus we have a contradiction.
- If $l_1 = M_0 = (M+3)/2$ then 3M = b = 2M + 1, and so M = 1 follows. Thus we have a contradiction.

Next, we suppose that y_{12} is an odd number with $y_{12} \neq 1$.

The equation $(b^{y_{12}}-1)/2^{x_1} = l_1^{s_1}$ leads $2^{x_1}l_1^{s_1} = b^{y_{12}}-1$. Thus, from Lemma 2.2, $b-1 = 2^{x_1}$, and so $b = 2^{x_1}+1$ follows. Therefore, the other equation $(2^{x_{12}}-1)/b^{y_1} = l_1^{s_1}$, $2^{x_1}+1|2^{x_{12}}-1$ is obtained. Thus, from Lemma 2.5, both $x_{12} \equiv 0 \pmod{2}$ and $x_1 | x_{12} / 2$ follow.

If b is an odd prime number, from Proposition 3.4, the equation $2^{x_{12}} - 1 = b^{y_1} \cdot l_1^{s_1}$ has only two solutions;

$$2^4 - 1 = 3^1 \cdot 5^1, \qquad 2^6 - 1 = 3^2 \cdot 7^1.$$

If b = 3, $l_1^{s_1} = 5^1$ then $2^{s_1} = 3 - 1 = 2$ and so, $x_1 = 1$. Furthermore, from $(b^{y_{12}} - 1)/2^{x_1} = l_1^{s_1}$, $(3^{y_{12}} - 1)/2 = 5$ and so $3^{y_{12}} = 11$ follows. Thus we have a contradiction. On the other three cases $(b, l_1^{s_1}) = (5, 3^1)$, $(3, 7^1)$, $(7, 3^2)$, we have a contradiction similarly.

Suppose $b = l_2^{s_2} \cdot l_3^{s_3}$. If $x_{12} \equiv 0 \pmod{4}$ follows, from Proposition 3.8, the equation $2^{s_{12}} - 1 = b^{y_1} \cdot l_1^{s_1}$ has an unique solution $2^8 - 1 = 3^1 \cdot 5^1 \cdot 17^1$. That is $b^{y_1} = 3^1 \cdot 5^1$, $3^1 \cdot 17^1$, $5^1 \cdot 17^1$. Hence $y_1 = 1$ and b = 15, 51, 85 follow. Thus we have a contradiction to $b = 2^{s_1} + 1$ for each other. Therefore $x_{12} \equiv 0 \pmod{4}$ is satisfied. And, from Proposition 3.8, if the equation $2^{s_{12}} - 1 = b^{y_1} \cdot l_1^{s_1}$ has solutions then $b^{y_1} \cdot l_1^{s_1} = 3^1 \cdot M^1 \cdot p' = 3^1 \cdot M^1 \cdot (M+2)/3$ follows at least. We remark that $y_1 = 1$ is obtained since $3^1 \parallel b^{y_1}$ or $M^1 \parallel b^{y_1}$ follows, where notation $a^n \parallel b$ means that $a^n \mid b$ is satisfied but $a^{n+1} \mid b$ is not satisfied. If b = 3M, $l_1^{s_1} = (M+2)/3$, Then $(b^{y_{12}} - 1)/(b-1) = l_1^{s_1} = (M+2)/3 = (b+6)/9$, and so $-9 \equiv -6 \pmod{b}$ is satisfied. That is $3 \equiv 0 \pmod{b}$. Thus we have a contradiction. On the other two cases $(b, l_1^{s_1}) = (M+2, M^1)$, $(M(M+2)/3, 3^1)$, we

have a contradiction similarly.

We consider solutions of equation $\frac{2^{2x}-1}{b^{y_1}} = \frac{b^{y_{12}}-1}{2^{x_1}} = l_1^{s_1} \cdot l_2^{s_2}$, where *b* is an odd prime number. **Theorem 5.2** The equation has no solutions.

Proof First, we suppose that x is even. From Proposition 3.8, The equation $2^{2x} - 1 = l_1^{s_1} \cdot l_2^{s_2} \cdot b^{y_1}$ has an unique solution $2^8 - 1 = 3^1 \cdot 5^1 \cdot 17^1$. Then we consider the other equation $b^{y_{12}} - 1 = 2^{x_1} \cdot l_1^{s_1} \cdot l_2^{s_2}$. If b = 3 follows, $3^{y_{12}} - 1 = 2^{x_1} \cdot 5^1 \cdot 17^1$ and so $5 \mid 3^{y_{12}} - 1 = 2^{x_1} \cdot 3^1 \cdot 17^1$ and so $17 \mid 5^{y_{12}} - 1$ is satisfied. That is $4 \mid y_{12}$. If b = 5 follows, $5^{y_{12}} - 1 = 2^{x_1} \cdot 3^1 \cdot 17^1$ and so $17 \mid 5^{y_{12}} - 1$ is satisfied. That is $16 \mid y_{12}$. If b = 17 follows, $17^{y_{12}} - 1 = 2^{x_1} \cdot 3^1 \cdot 5^1$ and so $5 \mid 17^{y_{12}} - 1$ is satisfied. That is $4 \mid y_{12}$. Thus $y_{12} \equiv 0 \pmod{4}$ follows. Therefore, from Proposition 4.4, the equation $b^{y_{12}} - 1 = 2^{x_1} \cdot l_1^{s_1} \cdot l_2^{s_2}$ has no solutions for the above cases.

Next, we suppose that x is odd. From Proposition 3.8, if the equation $2^{2x} - 1 = l_1^{s_1} \cdot l_2^{s_2} \cdot b^{y_1}$ has solutions, there exist an odd

prime number p and a positive integer t for M such that $2^{2m} - 1 = 3^1 \cdot M^1 \cdot p^t = 3^1 \cdot M^1 \cdot (M+2)/3$. Now, put $M = 2^q - 1$, where q is a suitable odd prime number with $q \ge 5$. Then we consider the other equation $b^{y_{12}} - 1 = 2^{x_1} \cdot l_1^{x_1} \cdot l_2^{x_2}$.

In the case of b = 3, the equation $3^{y_{12}} - 1 = 2^{x_1} \cdot M^1 \cdot (M+2)/3$ is satisfied. If $y_{12} \equiv 0 \pmod{4}$ follows, from Proposition 4.4, there is no solution. If $y_{12} \equiv 2 \pmod{4}$ follows, from Lemma 4.5, there exists an odd positive integer n with $n \neq 1$ such that $y_{12} = 2n$. Then we have $x_1 = v_2(3^{y_{12}} - 1) = v_2(3^2 - 1) = 3$. Furthermore, from $gcd(3^n - 1, 3^n + 1) = 2$ and Lemma 4.1, $2 < 3^n - 1 < 3^n + 1 < 2^2 \cdot M \cdot (M+2)/3$ is satisfied. Hence, either $\begin{cases} 3^n - 1 = 2 \cdot M \\ 3^n + 1 = 4 \cdot (M+2)/3 \end{cases}$ or $\begin{cases} 3^n - 1 = 2 \cdot (M+2)/3 \\ 3^n + 1 = 4 \cdot M \end{cases}$ follows.

Then the system of equation leads (M, n) = (1, 1) for each case. Thus we have a contradiction. If y_{12} is odd, then $x_{12} = 1$ is satisfied. Then we have $3^{y_{12}} - 1 = 2^1 \cdot (2^q - 1) \cdot (2^q + 1) / 3$. That is $3^{y_{12}+1} - 2^{2q+1} = 1$. Thus we have a contradiction to Catalan's Theorem.

In the case of b = M, the equation $M^{y_{12}} - 1 = 2^{x_1} \cdot 3^1 \cdot (M+2)/3$ is satisfied. If $y_{12} \equiv 0 \pmod{4}$ follows, from Proposition 4.4, there is no solution. If $y_{12} \equiv 2 \pmod{4}$ follows, from Lemma 4.5, $y_{12} = 2$ is satisfied. Therefore, $M^2 - 1 = 2^{x_1}(M+2)$, and so $(2^q - 1)^2 - 1 = 2^{x_1}(2^q + 1)$ is satisfied. That is $2^{q+1}(2^{q-1} - 1) = 2^{x_1}(2^q + 1)$. Hence $x_1 = q + 1$ and $2^{q-1} - 1 = 2^q + 1$ follows. Since the inequality $2^{q-1} - 1 < 2^q + 1$ is satisfied clearly, we have a contradiction. If y_{12} is odd, we have $x_{12} = v_2(M-1) = v_2(2^q - 2) = 1$. Therefore, $M^{y_{12}} - 1 = 2(M+2)$, and so $M^{y_{12}} = 2M + 5$ is satisfied. Thus we have a contradiction.

In the case of b = p, the equation $p^{y_{12}} - 1 = 2^{x_1} \cdot 3^1 \cdot M^1$ is satisfied. If $y_{12} \equiv 0 \pmod{4}$ follows, from Proposition 4.4, there is no solution. If $y_{12} \equiv 2 \pmod{4}$ follows, from Lemma 4.5, $y_{12} \equiv 2$ is satisfied. Therefore, $p^2 = 2^{x_1} \cdot 3M + 1$, and so $\{(M+2)/3\}^2 = (2^{x_1} \cdot 3M + 1)^t$ is satisfied. Hence $4 \equiv 9 \pmod{M}$, and so $0 \equiv 5 \pmod{M}$ follows. Thus we have a contradiction. If $y_{12} \equiv 1$ follows, then $p \equiv 2^{x_1} \cdot 3M + 1$, and so $(M+2)/3 \equiv (2^{x_1} \cdot 3M + 1)^t$ is satisfied. Hence $2 \equiv 3 \pmod{M}$, and so $0 \equiv 1 \pmod{M}$ follows. Thus we have a contradiction. Suppose that y_{12} is an odd positive integer with $y_{12} \neq 1$. Then we remark that $2 \mid p-1$ and $M \nmid p-1$ are satisfied. Therefore, from Lemma 2.2, either $p-1=2^{x_1}$ or $p-1=3 \cdot 2^{x_1}$ follows. Therefore, from $p' = (M+2)/3 = (2^q + 1)/3$, we have $2^q + 1 = 3(k \cdot 2^{x_1} + 1)^t$, where k = 1, 3. Then, If $x_1 \ge 2$ follows, $1 \equiv 3 \pmod{4}$, and so $0 \equiv 2 \pmod{4}$ follows. Thus we have a contradiction. If $x_1 = 1$ follows, $2^q + 1 = 3^{t+1}$ has no solutions. And, from $7 \nmid 2^q + 1$, $2^q + 1 = 3 \cdot 7^t$ has no solutions too.

We consider solutions of the equation $\frac{2^{4x}-1}{b^{y_1}} = \frac{b^{y_{12}}-1}{2^{x_1}} = l_1^{s_1} \cdot l_2^{s_2}$, where $b = l_3^{s_3} \cdot l_4^{s_4}$.

Theorem 5.3 There is an unique solution $\frac{2^{12}-1}{91^1} = \frac{91^1-1}{2^1} = 3^2 \cdot 5^1$.

Proof From Proposition 3.9, the equation $2^{4x} - 1 = b^{y_1} \cdot l_1^{s_1} \cdot l_2^{s_2}$ has the following two solutions:

$$2^{12} - 1 = 3^2 \cdot 5^1 \cdot 7^1 \cdot 13^1, \qquad \qquad 2^{16} - 1 = 3^1 \cdot 5^1 \cdot 17^1 \cdot 257^1.$$

First, we consider the case of $2^{12} - 1 = 3^2 \cdot 5^1 \cdot 7^1 \cdot 13^1$. Then we remark that $y_1 = 1$ is satisfied.

Suppose b = 91. Then the other equation $91^{y_{12}} - 1 = 2^{x_1} \cdot 3^2 \cdot 5^1$ is satisfied. If y_{12} is even, $23 | 91^{y_{12}} - 1$ follows. Thus we have a contradiction. If y_{12} is odd, we have $x_1 = v_2(91-1) = 1$. Therefore $91^{y_{12}} - 1 = 2^1 \cdot 3^2 \cdot 5^1 = 90$, and so $y_{12} = 1$ is obtained.

Thus $\frac{2^{12}-1}{91^1} = \frac{91^1-1}{2^1} = 3^2 \cdot 5^1$ is a solution.

- If b = 45, the other equation $45^{y_{12}} 1 = 2^{x_1} \cdot 7^1 \cdot 13^1$ follows. Thus we have a contradiction to $11|45^{y_{12}} 1$.
- If b = 63, the other equation $63^{y_{12}} 1 = 2^{x_1} \cdot 5^1 \cdot 13^1$ follows. Thus we have a contradiction to $31 | 63^{y_{12}} 1$.
- If b = 117, the other equation $117^{y_{12}} 1 = 2^{x_1} \cdot 5^1 \cdot 7^1$ follows. Thus we have a contradiction to $29 | 117^{y_{12}} 1$.
- If b = 35, the other equation $35^{y_{12}} 1 = 2^{x_1} \cdot 3^2 \cdot 13^1$ follows. Thus we have a contradiction to $17 \mid 35^{y_{12}} 1$.

If b = 65, the other equation $65^{y_{12}} - 1 = 2^{x_1} \cdot 3^2 \cdot 7^1$ follows. Then, from $3 \mid 65^{y_{12}} - 1$, y_{12} is even. Thus we have a contradiction to $11|65^{y_{12}}-1$.

Next, we consider the case of $2^{16} - 1 = 3^1 \cdot 5^1 \cdot 17^1 \cdot 257^1$. Then we remark that $y_1 = 1$ is satisfied.

If b = 15, the other equation $15^{y_{12}} - 1 = 2^{x_1} \cdot 17^1 \cdot 257^1$ follows. Thus we have a contradiction to $7|15^{y_{12}} - 1$.

If b = 51, the other equation $51^{y_{12}} - 1 = 2^{x_1} \cdot 5^1 \cdot 257^1$ follows. Thus we have a contradiction to $5^2 | 51^{y_{12}} - 1$.

If b = 771, the other equation $771^{y_{12}} - 1 = 2^{x_1} \cdot 5^1 \cdot 17^1$ follows. Thus we have a contradiction to $7|771^{y_{12}} - 1$.

- If b = 85, the other equation $85^{y_{12}} 1 = 2^{x_1} \cdot 3^1 \cdot 257^1$ follows. Thus we have a contradiction to $7 | 85^{y_{12}} 1$.
- If b = 1285, the other equation $1285^{y_{12}} 1 = 2^{x_1} \cdot 3^1 \cdot 17^1$ follows. Thus we have a contradiction to $107 | 1285^{y_{12}} 1$.
- If b = 4369, the other equation $4369^{y_{12}} 1 = 2^{x_1} \cdot 3^1 \cdot 5^1$ follows. Thus we have a contradiction to $7 | 4369^{y_{12}} 1$.

The proof is complete.

(Received: Sep. 25, 2018) (Accepted: Dec. 5, 2018)

References

P.Mihăilescu : "Primary Cyclotomic Units and a Proof of Catalan's Conjecture", J.Reinen Angew. Math. Vol. 572, pp.167-195 (2004).
M.A.Bennett : "On Some Exponential Equation of S.S.Pillai", Canad J. Math. Vol. 53, No. 5, pp.897-922 (1980).
N.Kobachi, Y.Motoda, and Y.Yamahata : "On Some Diophantine Equations (II)", Research Reports of NIT Kumamoto College Vol. 9, pp.83-90 (2017).