On Some Diophantine Equations (II)

Nobuo Kobachi*, Yasuo Motoda**, Yukiho Yamahata***

Abstract In this paper, we treat the equation $(p^{x_{12}}-1)/q^{y_1} = (q^{y_{12}}-1)/p^{x_1} = k$, where k is a fixed integer. Especially, we study the cases of k satisfied with $1 \le k \le 5$ or prime $k \ge 7$. The equation $(p^{x_{12}}-1)/q^{y_1} = (q^{y_{12}}-1)/p^{x_1} = k$ has solutions in the cases of k = 1, 3, 5.

Keywords : Diophantine equation, Existence condition of solution, Quadric field, Fundamental unit, Residue class

1. Intoroduction

Let *a*, *b*, *x*, *y* be positive integers. The diophantine equation $a^x - b^y = c$, where *c* is a fixed nonzero integer, has been treated by many authors. In the case of c = 1, the following Catalan's theorem⁽¹⁾ is well known:

Catalan's theorem Let a, b, x, y > 1. Then $a^x - b^y = 1$ has a unique solution (a, b, x, y) = (3, 2, 2, 3).

M.A.Bennett⁽²⁾ proved, if a, b > 1, $a^x - b^y = c$ has at most two solutions in x and y. We can find that two solutions of $a^x - b^y = c$ in x and y, corresponding to the following set of equations:

$$3^{1} - 2^{1} = 3^{2} - 2^{3} = 1;$$

$$2^{3} - 3^{1} = 2^{5} - 3^{3} = 5;$$

$$2^{4} - 3^{1} = 2^{8} - 3^{5} = 13;$$

$$2^{3} - 5^{1} = 2^{7} - 5^{3} = 3;$$

$$13^{1} - 3^{1} = 13^{3} - 3^{7} = 10;$$

$$(1.2) \qquad 91^{1} - 2^{1} = 91^{2} - 2^{13} = 89;$$

$$6^{1} - 2^{1} = 6^{2} - 2^{5} = 4;$$

$$15^{1} - 6^{1} = 15^{2} - 6^{3} = 9;$$

$$280^{1} - 5^{1} = 280^{2} - 5^{7} = 275;$$

$$4930^{1} - 30^{1} = 4930^{2} - 30^{5} = 4900;$$

$$6^{4} - 3^{4} = 6^{5} - 3^{8} = 1215.$$

Furthermore, he referred the following conjecture:

Conjecture If a, b > 1 and c > 0, then $a^x - b^y = c$ has at most one solution in x and y, except for those triples (a, b, c) corresponding to (1.2).

Let p, q be primes with p < q. In this paper, we treat the equation $p^{x_1} - q^{y_1} = p^{x_2} - q^{y_2} = c$, where x_1, x_2, y_1, y_2

^{*} Faculty of Liberal Studies

²⁶²⁷ Hirayamashinmachi Yatsushiro-shi Kumamoto, Japan 866-8051

^{**} Yatsushiro National College of Technology ex-Professor

^{***} Yatsushiro National College of Technology (Bioengineering) Graduate

are positive integers with $x_1 < x_2$ and $y_1 < y_2$. Now, let $x_{12} = x_2 - x_1$, $y_{12} = y_2 - y_1$. Then $p^{x_1} - q^{y_1} = p^{x_2} - q^{y_2}$ leads

(1.3)
$$\frac{p^{x_{12}}-1}{q^{y_1}} = \frac{q^{y_{12}}-1}{p^{x_1}} \coloneqq k \ (\in \mathbb{N})$$

2. Equation
$$\frac{p^{x_{12}}-1}{q^{y_1}} = \frac{q^{y_{12}}-1}{p^{x_1}} = k$$

Let p and q be primes with p < q. Let x_1 , y_1 , x_{12} and y_{12} be positive integers. In this section, we consider the equation

(2.1)
$$\frac{p^{x_{12}}-1}{q^{y_1}} = \frac{q^{y_{12}}-1}{p^{x_1}} = k,$$

where k is a fixed positive integer. Then, since p < q, it follows $x_{12} > 1$ and $q \nmid p-1$. Here, we note as follows:

- If k is odd then p = 2 and q is an odd prime;
- If k is even then both p and q are odd primes.

2.1 The case of k = 1

Let k = 1. Then (2.1) leads

 $q^{y_{12}} - 2^{x_1} = 1$.

 $(2.1.1) 2^{x_{12}} - q^{y_1} = 1$ and

Theorem 1 The system of equations (2.1.1) and (2.1.2) has two solutions $(q, x_1, y_1, x_{12}, y_{12}) = (3, 3, 1, 2, 2)$,

(3, 1, 1, 2, 1).

(2.1.2)

Proof It is proved by using Catalan's theorem. Since $x_{12} > 1$, it follows $y_1 = 1$ from (2.1.1).

First, suppose $x_1 > 1$ and $y_{12} > 1$. Then, (2.1.2) has a unique solution $(q, x_1, y_{12}) = (3, 3, 2)$. Thus, from (2.1.1), $x_{12} = 2$ is obtained. Therefore (3, 3, 1, 2, 2) is a solution of system of equations.

Next, suppose $x_1 = 1$ or $y_{12} = 1$. If $x_1 = 1$, from (2.1.2), then $q^{y_{12}} = 3$, and so $(q, y_{12}) = (3, 1)$. Thus, from (2.2.1), $y_1 = 1$ is obtained. If $y_{12} = 1$, by adding (2.1.1) and (2.1.2), then $2^{x_{12}} - 2^{x_x} = 2$. Thus $2^{x_{12}-1} - 2^{x_x-1} = 1$, and so $(x_1, x_{12}) = (1, 2)$. Therefore, in each case, (3, 1, 1, 2, 1) is a solution of equations.

2.2 The case of k = 2

Let k = 2. Then (2.1) leads

(2.2.1)
$$\frac{p-1}{2} \cdot \frac{p^{x_{12}}-1}{q^{y_1}(p-1)} = \frac{q-1}{2p^s} \cdot \frac{q^{y_{12}}-1}{p^{x_1-s}(q-1)} = 1,$$

where $s = \nu_p(q-1)$.

Then we have (p-1)/2=1, and so p=3. Thus $(3^{x_1}-1)/2q^{y_1}=1$ and so $3^{x_1}-3=2(q^{y_1}-1)$. If s>1, since $x_{12}>1$, then $-3\equiv 0 \pmod{9}$. We have a contradiction. If s=0 then (q-1)/2=1, and so q=3. This is a contradiction to p < q. Therefore, from now on, we can suppose s=1. And, it follows (q-1)/6=1, and so q=7.

Then (2.2.1) leads (2.2.2) $3^{x_{12}} - 1 = 2 \cdot 7^{y_1}$ and

 $(2.2.3) 7^{y_{12}} - 1 = 3^{x_1 - 1}.$

Proposition 1 Let *d* be a square free integer. Let $\zeta = \alpha + \beta \sqrt{d}$ be a element of quadric field $\mathbb{Q}(\sqrt{d})$. Put $\zeta^n = \alpha_n + \beta_n \sqrt{d}$ for $n \in \mathbb{Z}$. Then both α_n and β_n are satisfied with the recurrence formula $X_{n+2} = 2\alpha X_{n+1} - N(\zeta)X_n$. **Proof** Since $\zeta^2 = \alpha^2 + \beta^2 d + 2\alpha\beta\sqrt{d} = \alpha^2 + \beta^2 d + 2\alpha(\zeta - \alpha)$, it follows $\zeta^2 = 2\alpha\zeta - N(\zeta)$. Thus $\zeta^{n+2} = 2\alpha\zeta^{n+1} - N(\zeta)\zeta^n$, and so $\alpha_{n+2} + \beta_{n+2}\sqrt{d} = 2\alpha(\alpha_{n+1} + \beta_{n+1}\sqrt{d}) - N(\zeta)(\alpha_n + \beta_n\sqrt{d})$. Therefore the proof is complete.

Theorem 2 The equation (2.2.2) has no solutions. **Proof** The equation (2.2.2) gives $x_{12} \equiv 1 \pmod{2}$. Suppose $y_{12} \equiv 1 \pmod{2}$ is odd. It follows $\nu_2(7^{y_1} - 1) = 1$. Then, from (2.2.2), $2 = \nu_2(2(7^{y_1} - 1)) = \nu_2(3(3^{x_{12}} - 1)) > 2$ is obtained. We have a contradiction.

Suppose $y_{12} \equiv 0 \pmod{2}$. Let $x_{12} = 2x + 1$ and $y_1 = 2y (x, y \in \mathbb{N})$. Then (2.2.2) leads

$$(2.2.4) \qquad 3^{2x+2} - 6 \cdot 7^{2y} = 3$$

Let $\varepsilon = 5 + 2\sqrt{6}$ be the fundamental unit of $\mathbb{Q}(\sqrt{6})$. Put $\varepsilon^n = t_n + u_n\sqrt{6}$ for $n \in \mathbb{Z}$. Then, there exists $N \in \mathbb{N}$ such that $3^{x+1} + 7^{y_1}\sqrt{6} = (3+\sqrt{6})\varepsilon^N = (3t_N + 6u_N) + (t_N + 3u_N)\sqrt{6}$. Furthermore, put $v_n = t_n + 3u_n$. Then sequence $\{v_n\}$ is satisfied with $v_0 = 1$, $v_1 = 11$ and $v_{n+2} = 10v_{n+1} - v_n$. That is \cdots , 1, 11, 109, 1079, 10681, \cdots . Since $v_{n+2} = 10v_{n+1} - v_n$, it follows $v_{n+4} \equiv 3v_{n+3} - v_{n+2} \equiv v_{n+2} - 3v_{n+1} \equiv -v_n \pmod{7}$. Thus $7 \nmid v_n$. This is a contradiction to $v_N = t_N + 3u_N = 7^{y_1}$.

Therefore (2.2.2) has no solutions.

2.2 The case of k = 3

Let k = 3. Then (2.1) leads

$$(2.3.1) \qquad 2^{x_{12}} - 1 = 3 \cdot q^{y}$$

and

(2.3.2)
$$\frac{q-1}{2^s} \cdot \frac{q^{y_{12}}-1}{2^{x_1-s}(q-1)} = 3,$$

where $s = \nu_2(q-1)$.

The equation (2.3.1) gives $x_{12} \equiv 0 \pmod{2}$. Let $x_{12} = 2x (x \in \mathbb{N})$. If x = 1 then $q^{y_1} = 1$. We have a contradiction. Therefore, from now on, we can suppose $x \ge 2$. Then (2.3.1) leads $4(4^{x-2} + \dots + 1) = q^{y_1} - 1$. Thus $\nu_2(q^{y_1} - 1) = 2$. Hence $y_1 \equiv 1 \pmod{2}$ and s = 2. Furthermore, from (2.3.2), we have $(q-1)/2^2 = 1$ or 3, and so q = 5 or 13.

Let $y_1 = 2y + 1$ ($y \in \mathbb{N} \cup \{0\}$). Then (2.3.1) leads

$$(2.3.3) \qquad 2^{2x} - 15 \cdot 5^{2y} = 1$$

or

 $(2.3.4) \qquad 2^{2x} - 39 \cdot 13^{2y} = 1.$

Proposition 2 The equation (2.3.4) has no solutions.

Proof Let $\varepsilon = 25 + 4\sqrt{39}$ be the fundamental unit of $\mathbb{Q}(\sqrt{39})$. Put $\varepsilon^n = t_n + u_n\sqrt{39}$ for $n \in \mathbb{Z}$. Then, there exists $N \in \mathbb{N}$ such that $2^x + 13^y\sqrt{39} = t_N + u_N\sqrt{39}$. Since t_n is satisfied with $t_0 = 1$, $t_1 = 25$ and $t_{n+2} = 50t_{n+1} - t_n$, it follows $2 \nmid t_n$. This is a contradiction to $t_N = 2^x$. Thus (2.3.4) has no solutions.

Proposition 3 The equation (2.3.3) has a unique solution (x, y) = (2, 0).

Proof Let $\varepsilon = 4 + \sqrt{15}$ be the fundamental unit of $\mathbb{Q}(\sqrt{15})$. Put $\varepsilon^n = t_n + u_n\sqrt{15}$ for $n \in \mathbb{Z}$. Then, there exists $N \in \mathbb{N} \cup \{0\}$ such that $2^x + 5^y\sqrt{15} = t_N + u_N\sqrt{15}$. Furthermore, u_n is satisfied with $u_0 = 0$, $u_1 = 1$ and $u_{n+2} = 8u_{n+1} - u_n$. That is \cdots , 0, 1, 8, 63, 496, 3905, \cdots . Thus we have

 $u_{n+5} \equiv 3u_{n+4} - u_{n+3} \equiv 3u_{n+3} - 3u_{n+2} \equiv u_{n+2} - 3u_{n+1} \equiv -u_n \pmod{5}$

and

$$u_{n+5} \equiv -3u_{n+4} - u_{n+3} \equiv -3u_{n+3} + 3u_{n+2} \equiv u_{n+2} + 3u_{n+1} \equiv -u_n \pmod{11}$$

Therefore, for $n \in \mathbb{N}$, $5 | u_n$ leads 5 | n. Furthermore 5 | n leads $11 | u_n$. Hence, $u_N = 5^y$ leads $11 | u_N$, if $N \in \mathbb{N}$. We have a contradiction. Thus N = 0. Then we have $2^x = 4$ and $5^y = 1$. Therefore (x, y) = (2, 0) is a solution of (2.3.3).

Theorem 3 The system of equations (2.3.1) and (2.3.2) has a unique solution $(q, x_1, y_1, x_{12}, y_{12}, s) = (5, 3, 1, 4, 2, 2)$.

Proof From proposition 2 and 3, it will be sufficient to prove that $(x_1, y_{12}) = (3, 2)$ is a unique solution of (2.3.2) as (q, s) = (5, 2). Then (2.3.2) leads

$$(2.3.5) \qquad 5^{y_{12}} - 3 \cdot 2^{x_1} = 1.$$

Since $3 | 5^{y_{12}} - 1$, it follows $y_{12} \equiv 0 \pmod{2}$. Let $y_{12} = 2y' (y \in \mathbb{N})$. From (2.3.5), We have

$$(2.3.6) \qquad 25^{y'-1} + \dots + 1 = 2^{x_1-3}$$

If y is even then $2^{x_1-3} = 25^{y'-1} + \dots + 1 \equiv 0 \pmod{13}$. We have a contradiction. Thus y' is odd. Then, since $25^{y'-1} + \dots + 1$ is odd, it follows $x_1 = 3$. Thus y' = 1, and so $y_{12} = 2$. Therefore (3, 2) is a unique solution of (2.3.2).

2.4 The case of k = 4

Let k = 4. Then (2.1) leads

(2.4.1)
$$\frac{p-1}{4} \cdot \frac{p^{x_{12}}-1}{q^{y_1}(p-1)} = \frac{q-1}{4p^s} \cdot \frac{q^{y_{12}}-1}{p^{x_1-s}} = 1,$$

where $s = \nu_p(q-1)$.

Theorem 4 The equation (2.4.1) has no solutions.

Proof We have (p-1)/4=1, and so p=5. Thus $(5^{x_{12}}-1)/4q^{y_1}=1$, and so $5^{x_{12}}-4q^{y_1}=1$. If s>1, since $x_{12}>1$, then $-5\equiv 0 \pmod{25}$. We have a contradiction. If s=0 then (q-1)/4=1, and so q=5. This is a contradiction to p < q. Therefore, from now on, we can suppose s=1. And, it follows (q-1)/20=1, and so q=21. This is a contradiction to prime. Thus (2.4.1) has no solutions.

2.5 The case of k = 5

Let k = 5. Then (2.1) leads

 $(2.5.1) \qquad 2^{x_{12}} - 1 = 5 \cdot q^{y_1} ,$

and

 $(2.5.2) \qquad q^{y_{12}} - 1 = 5 \cdot 2^{x_1} \ .$

Theorem 5 The system of equations (2.5.1) and (2.5.2) has a unique solution $(q, x_1, y_1, x_{12}, y_{12}) = (3, 4, 1, 4, 4)$.

Proof The equation (2.5.1) gives $4 | x_{12}$. Let $x_{12} = 4x$ ($x \in \mathbb{N}$). Then $3(16^{x-1} + \dots + 1) = q^{y_1}$ is obtained. Thus we have q = 3 and

 $(2.5.3) 16^{x-1} + \dots + 1 = 3^{y_1-1}.$

If x > 1 then $x \equiv 0 \pmod{3}$. Thus $16^2 + 16 + 1|16^{x-1} + \dots + 1$. Since $16^2 + 16 + 1 = 273 = 3 \times 7 \times 13$, it follows $7|3^{y_1-1}$. We have a contradiction. Therefore $(x, y_1) = (1, 1)$ is a solution of (2.5.3).

Similarly, (2.5.2) gives $4 | y_{12}$. Let $y_{12} = 4x$ ($x \in \mathbb{N}$). Thus we have

 $(2.5.4) \qquad 81^{y-1} + \dots + 1 = 2^{x_1-4}.$

If y > 1 then $y \equiv 0 \pmod{2}$. Thus $81+1|81^{y-1}+\dots+1$. Since $81+1=82=2\times41$, it follows $41|2^{x_i-1}$. We have a contradiction. Therefore $(y, x_i) = (1, 1)$ has a solution of (2.5.4). And the proof is complete.

2.6 The case of prime $k \ge 7$

Let k be a fixed prime with $k \ge 7$. Then (2.1) leads

(2.6.1) $2^{x_{12}} - 1 = k \cdot q^{y_1}$, and (2.6.2) $q^{y_{12}} - 1 = k \cdot 2^{x_1}$.

Proposition 4 If q = 3 then the system of equations (2.6.1) and (2.6.2) has no solutions.

Proof Let q = 3. Then, since $3 | 2^{x_{12}} - 1$, it follows $x_{12} \equiv 0 \pmod{2}$. First, suppose $x_{12} \equiv 0 \pmod{4}$. Let $x_{12} \equiv 4x \ (x \in \mathbb{N})$. Then, from (2.6.1), we have $(2^{2x} + 1)\{(2^{2x} - 1)/3^{y_1}\} = k$. Thus $(2^{2x} - 1)/3^{y_1} = 1$, and so $2^{2x} - 3^{y_1} = 1$. Therefore, by Catalan's theorem, we have $(x, y_1) = (1, 1)$. Hence $(x_{12}, y_1) = (4, 1)$ is a solution of (2.6.1). Furthermore k = 5 holds. This is a contradiction to $k \ge 7$. Next, suppose $x_{12} \equiv 0 \pmod{4}$. Let $x_{12} = 4x + 2 \ (x \in \mathbb{N} \cup \{0\})$. Then, (2.6.1) leads, we have $\{(2^{2x+1} + 1)/3^{y_1}\}(2^{2x+1} - 1) = k$. We consider the following cases;

- (A) $(2^{2x+1}+1)/3^{y_1} = k$ and $2^{2x+1}-1=1$;
- (B) $(2^{2x+1}+1)/3^{y_1} = 1$ and $2^{2x+1}-1 = k$.

In the case (A), $2^{2x+1}-1=1$ give x=0. Thus $3/3^{y_1}=k$ is given. Hence $y_1=1$ and k=1 hold. This is a contradiction to $k \ge 7$. In the case(B), $(2^{2x+1}+1)/3^{y_1}=1$ leads $3^{y_1}-2^{2x+1}=1$. Thus, by Catalan's theorem, we have $(x, y_1)=(0, 1)$ and $(x, y_1)=(1, 2)$. When $(x, y_1)=(0, 1)$ holds, k=1 is given. This is a contradiction to $k \ge 7$. When $(x, y_1)=(1, 2)$ holds, k=7 is given. Thus $(x_{12}, y_1, k)=(6, 2, 7)$ has a solution of (2.6.1).

Then, from (2.6.2), we have $7|3^{y_{12}}-1$. Hence $6|y_{12}$. This result leads $3^6-1|3^{y_{12}}-1$. Since $3^6-1=728=2^3\times7\times13$, it follows $13|2^{x_1}$. We have a contradiction. Thus the system of equations (2.6.1) and (2.6.2) has no solutions.

From now on, we can suppose $q \ge 5$. Then $q \equiv \pm 1 \pmod{3}$ holds. Therefore, if y_{12} is even then $3 | q^{y_{12}} - 1$. Thus, from (2.6.2), we have 3 | k. This is a contradiction to prime $k \ge 7$. Thus y_{12} is odd. Similarly, from (2.6.1), we can obtain that x_{12} is odd. Furthermore, we have $\left(\frac{2}{q}\right) = \left(\frac{2^{x_1}}{q}\right) = \left(\frac{2^{x_1}}{q}\right) = \left(\frac{1}{q}\right) = 1$, where notation $\left(\frac{1}{2}\right)$ is Legendre's symbol. Thus $q \equiv \pm 1 \pmod{8}$. Similarly, $k \equiv \pm 1 \pmod{8}$ is obtained.

Proposition 5 If $y_{12} > 1$ then the system of equations (2.6.1) and (2.6.2) has no solutions.

Proof The equation (2.6.2) leads $\{(q-1)/2^{x_1}\}\{(q^{y_{12}}-1)/(q-1)\}=k$. Since $(q-1)/2^{x_1} < (q^{y_{12}}-1)/(q-1)$, it follows $(q-1)/2^{x_1} = 1$. Hence $q = 2^{x_1} + 1$. Since q is a prime with $q \ge 7$, it follows $x_1 \equiv 0 \pmod{2}$. Then, from (2.6.1), we have $2^{x_1} + 1 = q \mid 2^{x_{12}} - 1$. We have a contradiction, because $x_1 \equiv 0 \pmod{2}$ and $x_{12} \equiv 1 \pmod{2}$ hold. Thus the system of equations (2.6.1) and (2.6.2) has no solutions.

Let $y_{12} = 1$. Then (2.6.2) leads

 $(2.6.3) \qquad q = k \cdot 2^{x_1} + 1$

Proposition 6 4 If $x_1 = 1$ or $x_1 = 2$ then the system of equations (2.6.1) and (2.6.3) has no solutions. **Proof** First, suppose $x_1 = 2$. (2.6.3) leads q = 4k + 1. If $q \equiv 1 \pmod{8}$ then $k \equiv 0 \pmod{2}$. This is a contradiction

to prime $k \ge 7$. If $q \equiv -1 \pmod{8}$ then $2k \equiv -1 \pmod{4}$. We have a contradiction.

Next. Suppose $x_1 = 1$. (2.6.3) leads q = 2k + 1. If $q \equiv 1 \pmod{8}$ then $k \equiv 0 \pmod{4}$. This is a contradiction to prime $k \ge 7$. If $q \equiv -1 \pmod{8}$ then $k \equiv -1 \pmod{4}$. Since $k \equiv \pm 1 \pmod{8}$, it follows $k \equiv -1 \pmod{8}$. We note that x_{12} is odd with $x_{12} \ge 3$. Thus, from (2.6.1), we have $(-1)^{y_1} \equiv 1 \pmod{8}$. Hence y_1 is even.

On the other hand, if $q \equiv 1$ then $k \equiv 0 \pmod{3}$. This is a contradiction to prime $k \ge 7$. Thus $q \equiv -1 \pmod{3}$. And it follows $k \equiv -1 \pmod{3}$. Then, from (2.6.1), we have $1 \equiv (-1)^{y_1+1} \pmod{3}$. Thus y_1 is odd. We have a contradiction, and the proof is complete.

Theorem 6 The system of equations (2.6.1) and (2.6.3) has no solutions.

Proof By proposition 6, it will be sufficient to prove this for the case where $x_1 \ge 3$. Then, (2.6.3) give $q \equiv 1 \pmod{8}$. Furthermore, since x_{12} is odd with $x_{12} \ge 3$, (2.6.1) gives $k \equiv -1 \pmod{8}$.

Now, let $O_q(2) = m (m \cup \mathbb{N} \setminus \{1\})$. Then, there exists $s \in \mathbb{N}$ such that $q^s \mid 2^m - 1$ and $q^{s+1} \nmid 2^m - 1$. From (2.6.1), we have $m \mid x_{12}$. Thus m is odd with $m \ge 3$. If $2^m - 1 = q^s$ then $-1 \equiv 1 \pmod{8}$. We have a contradiction. Thus $2^m - 1 = k \cdot q^s$. Furthermore, since $m \mid q - 1$, (2.6.3) give $m \mid k \cdot 2^{x_1}$. Thus m = k. Then, since $k \cdot q^s = 2^k - 1 = 2(2^{k-1} - 1) + 1$, it follows $0 \equiv 1 \pmod{k}$. We have a contradiction, and the proof is complete.

(Received: Sep. 25, 2017) (Accepted: Dec. 6, 2017)

References

- (1) P.Mihăilescu, "Primary Cyclotomic Units and a Proof of Catalan's Conjecture", J. Reinen Angew. Math. 572, pp.167-pp.195(2004).
- (2) M.A.Bennett, "On Some Exponential Equation of S.S.Pillai", Canad. J. Math. 53(5), pp.897-pp.922(1980).