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Abstract In this paper, we consider two equations (p*—1)/(g—1)=(¢" —1)/(¢g—1) and a" —b" =a™—b" =1. Especially, on
(p* =D /Ng—D=(¢" —D/(g—1), we study in the case of y=3 and in the case of p=2. And, without using Catalan’s theorem, we

prove that " —b" =a™ —b" =1 has a unique solution.
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1. Introduction

Let a, b, x, y be positive integers. The diophantine equation «* —b* =c, where ¢ is a fixed nonzero integer, has

been treated by many authors. In the case of ¢ =1, the following Catalan’s theorem" is well known:

Catalan’s theorem Let qa, b, x, y>1.Then a*—»b" =1 has aunique solution (a, b, x, y)=(3, 2, 2, 3).

M.A.Bennett® proved the following theorem:

Theorem 1.1 if a, » and ¢ are nonzero integers with a, »>2, then the equation a*—»"=c has at most two

solutions in positive integers x and y.

R.Balasubramanian and T.N.Shorey®® treated the equation a(x” —1)/(x—1)=b(y" —1)/(y —1) . Y.Motoda® treated the
equation (p*"'+D/A(p+1)=(¢ +1/(g+1),where p and ¢ are distinct primes.

In this paper, we consider two equations (p*—1)/(p—1)=(¢"—-1)/(¢q—1) and a" —b"=a” —-b"=1. On
(P =D/ (p—D=(¢" —1/(g—1), we study it in the case of y=3 and in the case of p=2. In each case,
(p*=D/(p—1)=(¢"—1)/(g—1) has a wunique solution (p, q, x, ¥)=(2, 5, 5, 3) under some assumptions.

Furthermore, the equation «" —b" =a® —b" =1 has a unique solution (a, b, x,, y,, x,, ¥,)=(3, 2, 1, 1, 2, 3). This

result is proved without using Catalan’s theorem.
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2. Equation — =
)4

Let p and ¢ be positive primes with p=g¢. Let x and y be positive integers with x, y>2. In this section,

we consider the equation

x y_
2.1 pPol_g -l
p—1 q-1

2.1 The caseof y =3

Let y=3.Then (2.1) leads

]
(2.2) P g+,
p—1
Proposition 2.1 ¢ is an odd prime.

Proof If ¢=2 then p is an odd prime. And, from (2.2), p(7—p*')=6 holds. Thus p=3 and 7—p"'=2,

and so 3*' =5. Therefore we have a contradiction.

Proposition 2.2 x is odd.
Proof Suppose that x is even. If p is an odd prime then (p*—1)/(p—1) is even. This is a contradiction to
proposition 2.1. From (2.2), If p=2 then (¢+1)/2=2""'~1)/g. Thus (¢+1)/2=1(mod2), and so g=1(mod4).
=
q q q

leads g=+1(mod8). Since g=1(mod4), g=1(mod8) is obtained. Then (2.2) leads 2*=4(mod8 ), and so

1]_ 1, where [—] is Legendre’s symbol. This
q .

Furthermore, since ¢|2*"' —1, it follows

2*?=1(mod2). Thus x=2. By substituting this result for (2.2), we have ¢’ +¢—2=0,andso g=1, —2. Thisis a
contradiction to proposition 2.1.

O

Theorem 2.1 The equation (2.2) has a unique solution (p, ¢, x)=(2, 5, 5).
Proof Let x=2e+1(eeN). Then (2.2) leads

2e
(2.3) Prol _atl ey,

gp-1) p

Then, since ¢+1 iseven with g+1>4, it follows ¢=(q+1)/p=1. Furthermore (2.3) leads
(2.4) P+ =D =(pt=D(pt—1).
Then, since (pt—1)—(pt—t)=t—1>1, p*—1<pt—t<pt—1<p°+1 doesn’t occur. Thus, from (2.4), we have

(2.5 pt—t<p'—1<p’+1<pt—1.
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If pt—t<p’—1<p’+l<pt—1, since g=pt—1, then (p°—1)/g<(p‘+1)/g<1. This is a contradiction to

(p° —1)(p°+1)/g eN. Thus we have
t—t=p°—1
(2.6) P P
pt—1=p°+1

Thatis t=3, p3—p°)=2,andso p=2, e=2.Therefore (p, q, x)=(2, 5, 5) is a solution of (2.2).

2.2 Thecaseof p=2 and g=5(mod8)

Let p=2.Then (2.1)leads

@7  2ro1=4=l

We note that ¢ is an odd prime. From (2.7), since 2* —1 is odd, we have y=1(mod2).Nowlet y=2f+1(feN).
Then (2.7) leads

271 g+l (¢) -1
2 q*—1

2.8) (€N).

Since (2"'—1)/q is odd, it follows that f isoddand (g+1)/2=1(mod2),andso ¢=1(mod4).

2]:[2“]:[@“1)“]:
q q q

g=1(mod4), ¢=1(mod8) holds. This is a contradictionto ¢g=5(mod8). Thus x is odd.

From now on, we suppose ¢ =>5(mod8).

1]:1 . Thus g=+1(mod 8 ). Since
q

If x is even, from (2.8), then we have

Let x=2e+1(eeN). Then, (2.8) leads

28—1.29—17qf—l—l_qf—liqf—l—Z“.qf—Ze

(2.9) ,
B, B, 2 q-1 M 7

where §,, 8,, 7, and ~, are positive integers with 38, =¢, 7,7, =¢—2 and (2°+1/8,, 2°—=1/B,, (¢’ +29/,,
(¢ —2°)/~, N. Let

A=ged{(2°+1/5, (¢ +1/2}, B=ged{(2°+ 1/, (¢ =1)/(g -1}

C=ged{(2°~1)/B,, (¢ +1)/2}, D=ged{(2°=1)/B,, (¢" =D/g—D}.

Then 4, B, C and D are odd. Furthermore they are relatively primes to each other.
Proposition 2.3 The following equations hold:
A -1 — B
o o= 2
D] ~,\-8 2 )|C

—1
(b) N = ﬂlAz _qTﬁzDz 5

>
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© n="158 - 5C.
Proof = We have the following equations:
2°4+1=[AB; g’ +1=24C; ¢’ +2°=~,BC;
2°—1=3,CD; g’ —1=(¢g—1)BD; g’ —2°=~,4D.
Thus +BC= (¢’ +1)+(2°—~1)=24C+B,CD , and so 24—~B+3,D=0 . Similarly, we have Pu=o , where

2 N 0 B, 4
B, 0 - gq-1
0 -5 2 —
-7 9-1 =B, 0 D

have 2v,BC ={(¢’ + D2 +1)— (¢’ —D(2° —1)} =26,4*BC —(q¢—1)3,BCD*, and so equation (b). Similarly, equation (c)

B . .
and u= cl Then rank(P)=2 holds. Here Pu=o0 Ileads equation (a). Otherwise, we

is obtained.
]

Furthermore, from now on, we suppose that ¢—2 is a prime.
Proposition 2.4 We have the following results:
(@ If g=5(modl16)then 8, =q, 5,=1, v,=q¢—-2, v,=1;
(b)If g=13(mod16)then 5, =1, 8,=q, v,=qg—2, v,=1.
Proof If g=5(mod16) then (¢—1)/2=2(mod8) . Therefore, if 3, =1 and 3, =g, from proposition 2.3(b),
then 7, =—-1(mod8). This is a contradiction to 7, =1 or 3(mod8). Thus 5, =¢g and §,=1 hold. Then, from

proposition 2.3 (b), 7, =3(mod8) holds. Thus 7, =¢—2 and ~,=1. Similarly, we can obtain result (b) from
proposition 2.3(c).

U
Proposition 2.5 We have the following results:

(@) If g=5(mod16) with g=35 then (2.7) has no solutions;
(b) If g=13(mod16) then (2.7) has no solutions.
Proof If a primeg>5 which ¢—2 is a prime, then ¢g=1(mod3) holds. Thus, from proposition 2.3 (c) and
proposition 2.4, C*> =—1(mod3) holds. Therefore we have a contradiction.
U
Proposition 2.6 Let d be a square free integer. Let ¢ =a+f3+/d be an element of quadric field Q(d). Put

= N)X, .

n+1

("=a,+B,\d for ncZ.Thenboth o, and 3, are satisfied with the recurrence formula X, , = 2a.X

Proof Since (P=a’+3d+2a8Jd =0’ +Fd+2a(—a) , it follows (*=2a(—N() . Thus

¢ =2a¢"" = N()¢",andso «,,,+ ﬁ,Mﬁ =2a(a,,, + B8,.Nd)— N()a, + B,4/d) . Therefore the proof is complete.
O
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Theorem 2.2 We suppose that ¢g=5(mod8) and ¢—2 is a prime. Then equation (2.7) has a unique solution
(g, x, y)= (5,5, 3).
Proof  From proposition 2.5, we can show that (2.7) has no solutions except ¢=35. Furthermore, it will be

sufficient to prove this for the case of ¢=35.

Then, from proposition 2.3 (c) and proposition 2.4 (a), we have C>—10B>=—1. Let e=3++/10 be a
fundamental unit of Q(-/10). Put " =t, +u”\/ﬁ for neZ. Since N(e)=-1, there exists NeNU{0} such that
C=t,, and B=u,,, . Furthermore, since t,,,, +u,, V10 =(t,y +1,,"10)3++10), we have C=3z,, +10u,,
and B=t,, +3u,, . Thus, from proposition 2.3 (a), 4=t¢,, +2u,, and D=t,, —5u,, . Therefore, by substituting there
resultsto 24C=5" +1=5" + N(*"), we have
(2.10) 57 =565, +32t,u,, +50u, .

Now, if u,, =0 then N=0. Thus, since #,=1 and u,=0 , it follows f=1 and (4, B, C, D)=(1, 1, 3, 1).
Furthermore, e=1 and (g, x, y)=(5, 5, 3) are obtained by easy calculations. This is a solution of (2.7).

Suppose u,, >0 . Hence NcN . Then, from (2.10), we have ¢,u,,=0 (mod 5 ). Since N(")=1,

£,y Z0 (mod5) . Thus u,, =0(mod>5) is obtained.
The equation (2.10) leads
(2.11) 57 = (5t +16u,,)* — 613, .

Let n=5+ 26 be a fundamental unit of Q(+/6). Put n"=s, + Vm\/g for meZ.Andlet ¢=14+/6 be an element

of QW6). Put ¢ =r+w6 . We note that the class number of Q(+/6) has one. Then, since N(n) =1 and

N(€)=-5, there exists M eNU{0} such that (s, +v,6)(r, +w, N6)= (5, +16u,,)+u,,~/6 is satisfied, where

SM 6VM ][ rZL

Yu  Su )\War
. 1 Sy =6y, |[5t,y +16u,, 58yt + (165, — 6V, )u,,,

(2. 12) = M~ Tl= : A .
Nn™) u —5vy,ty + (s, —16v,)u,,,

5t,y +16u,,

u

2L = f+1.Thus , and so

2N

2L Vi Sy 2N

Since u,, =0(mod5), it follows 7, =w,, =0(mod5).
On the other hand, the sequence {r} 1is satisfied with =1, rn=1 and s, ,=2r,,+5; . That is

1,1, 7,19, 73, ---. And, we have 5, =25, (mod5) for /e NU{0}. Thus r,éo (mod 5) holds for /eN. This is a

contradiction to r,, =0 (mod 5 ). Therefore, if u,, >0, then (2.7) has no solutions.
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3. Equation a" —b" =a*™ —b" =1

Let « and b be positive integers with a, b>1.Let x, x,, y, and y, beintegers with x, <x, and y <y,.
In this section, we consider the equation
3.1) at —b" =a" —-b"=1.

The equation (3.1) leads
av —1_ b1

b."l a-"l

(3.2) €N,

where x,=x,—x, and y,=y,—y .
Furthermore, since a" —b" =1, (3.2) leads

a«‘lz _1 _ b/VIZ _1

33 =
3-3) a =1 b 41

Now, let s=[x,/x] and r=[y,/y], where [-] is Gauss’ notation. Then we have

(34) a -1 :a-’qz*«n +._.+axlz—:x, +(1‘7—1

a® —1 at —1
and

b —1 _— e (=D B
3.5 P (=) e A T
6y I - o

Therefore, from (3.3), x|x,, » |y, and +=0(mod2) hold. Thus there exist e, f €N such that x,=-ex, and

Y, =2/ aresatisfied. Let X =a" and Y =5".Then we have

(3.6) X-Y=1.
And (3.3) leads

e 2f
36 ALY -1
X-1 Y+1
Furthermore, (3.6) and (3.7) lead
(3.9) (Y1) = X =y = (X 1) 4

2141
k=1

Since X“'=X -1 +1=>"""(-D"",,, X", we have (2f +1)X =0(mod X*), and so 2/ +1=0(mod X ).

Thus there exists f, € N such that 2/ +1= Xf, is satisfied. Then, since X =1(mod 2) holds, we can suppose X >3.

And X=1(mod2)leads Y=0(mod2).

e+l

Similarly, since Y% =¥ +1)*"' 1= C.Y*, we have (e+1)Y=0(modY?), and so e+1=0 (modY ). Thus
Y: k

ft et
there exists ¢, € N suchthat e+1=7Ye is satisfied.

Here, if Ye,=2 then Y=2 and ¢ =1. Therefore, by easy calculations, we can obtain a solution (a, b, x,, x,, ¥,
»)=03,2,1,2,1,3) of(3.1). Thatis 3'-2'=3"-2"=1.

From now on, we suppose Ye, >4 . Then (3.8) leads

(3.9) Y+D =Xx" =y +1=X-D" +1.

Research Reports of NIT, Kumamoto College. Vol. 9 (2017)



If Y=2 then ¢ >2. And, from (3.6) and (3.9), 3 —2°/ =1 holds. This is a contradiction to theorem 1.1 in paper
(5). Thus we can suppose Y >4 .
Since X" =X )Y +1=X"f, — X £{(XF, 71)/2}+Zf£3(71)k*‘ »CX", we have X?f=0 (mod X*), and so

/i =0(mod X ). Thus there exists f, €N suchthat f =Xf, issatisfied.

Ye,
k=3 Ye

Similarly, since Y = (Y +1)" —1=Y¢, + (Y/2)Y’¢,(Ye, — D+> C.Y*, we have Y’¢ =0 (mod(Y/2)Y*), and

s0 ¢ =0(modY/2). Thus there exists e, €N suchthat e =(Y/2)e, is satisfied.
Then (3.9) leads
(3.10)  (rnEE = xSy o (1)

Proposition 3.1 Let a, n, k and Z be positive integers with Z >1. Then

(3.11)

aZ*?
A ]'az -1 G eN

hold for 3<k<aZz"

Proof We have
az’ Gzt = {(aZ” /k)' aZ'ble*I}Zk = {(azkiz /k)' az'ulckfl}zwz eN.

Therefore, any prime factor of 4 which is not a prime factor of Z is a prime factor of a- w1 G And the number

of prime factorsin &k is k—2 or less. Thus (3.11) is satisfied.

Proposition 3.2 Let »n be apositive integer with »>2. Then there exist sequences {e,} and {f,} such that

n—1

X(%) Ye, =YX“/;’+1=(X71)X”/;’+1

L
2

(3.12) Y+ 1)
is satisfied.

Proof The proof is by induction on » . The equation (3.12) is already proven for n=2. We suppose that (3.12)

holds for n =k . Then, since

x4

+Z( ., X

p\k—1 ‘. k
X(?) Yey :(X_I)X i +1:Xk+1f;( _Xk+2fk[‘X f}(

o [ XEF 1 Lk [(x
:XkakXIJrsz[ ];( ]+Xﬂ+22(1)/ 1{[ jﬁ{]x*ﬁ1cjl}

=3
holds, we have X**'f, =0 (mod X***), and so f, =0(mod X ). Thus there exists f,,, €N such that f, = Xf,,, is

satisfied. Similarly, since

. k-1 k k-1 ()" re
yor = o X e | L ve X v —1f+ o CY’
P k P k P k r |

k-1 k k-1 =1 (L) e P2

Y ) Yy ., [Y] [Y] s Y/ e,
=|—| Ye +|—| Ye |—| Ye —1{+|—| Y i C.
[2] ‘ [2] { 2) 2 Z JoJE e

holds, we have (Y/2)°Y?, =0(mod(¥/2)"Y*), and so e, =0 (modY/2). Thus there exists e, €N such that
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e, =Ye,,, is satisfied. Therefore (3.12) holds for n=#k+1.

O

If Ye >4 is supposed, by applying proposition 3.2, we can show that (3.8) has no solutions. Thus the following

theorem is satisfied.

Theorem 3 The equation (3.1) has a unique solution (a, b, x,, x,, ¥, ¥,)=@, 2,1, 2, 1, 3).
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