On Some Diophantine Equations (I)

Yukiho Yamahata*, Yasuo Motoda**, Nobuo Kobachi***

Abstract In this paper, we consider two equations $(p^x - 1)/(q - 1) = (q^y - 1)/(q - 1)$ and $a^{x_1} - b^{y_1} = a^{x_2} - b^{y_2} = 1$. Especially, on $(p^x - 1)/(q - 1) = (q^y - 1)/(q - 1)$, we study in the case of y = 3 and in the case of p = 2. And, without using Catalan's theorem, we prove that $a^{x_1} - b^{y_1} = a^{x_2} - b^{y_2} = 1$ has a unique solution.

Keywords : Diophantine equation, Existence condition of solution, Quadric filed, Fundamental unit, Residue class

1. Introduction

Let *a*, *b*, *x*, *y* be positive integers. The diophantine equation $a^x - b^y = c$, where *c* is a fixed nonzero integer, has been treated by many authors. In the case of c = 1, the following Catalan's theorem⁽¹⁾ is well known:

Catalan's theorem Let a, b, x, y > 1. Then $a^x - b^y = 1$ has a unique solution (a, b, x, y) = (3, 2, 2, 3).

M.A.Bennett⁽²⁾ proved the following theorem:

Theorem 1.1 if a, b and c are nonzero integers with a, $b \ge 2$, then the equation $a^x - b^y = c$ has at most two solutions in positive integers x and y.

R.Balasubramanian and T.N.Shorey^{(3),(4)} treated the equation $a(x^m - 1)/(x - 1) = b(y^n - 1)/(y - 1)$. Y.Motoda⁽⁵⁾ treated the equation $(p^{2e+1} + 1)/(p + 1) = (q^3 + 1)/(q + 1)$, where *p* and *q* are distinct primes.

In this paper, we consider two equations $(p^x - 1)/(p - 1) = (q^y - 1)/(q - 1)$ and $a^{x_1} - b^{y_1} = a^{x_2} - b^{y_2} = 1$. On $(p^x - 1)/(p - 1) = (q^y - 1)/(q - 1)$, we study it in the case of y = 3 and in the case of p = 2. In each case, $(p^x - 1)/(p - 1) = (q^y - 1)/(q - 1)$ has a unique solution (p, q, x, y) = (2, 5, 5, 3) under some assumptions. Furthermore, the equation $a^{x_1} - b^{y_1} = a^{x_2} - b^{y_2} = 1$ has a unique solution $(a, b, x_1, y_1, x_2, y_2) = (3, 2, 1, 1, 2, 3)$. This result is proved without using Catalan's theorem.

^{*} Yatsushiro National College of Technology (Bioengineering) Graduate

^{**} Yatsushiro National College of Technology ex-Professor

^{***} Faculty of Liberal Studies 2627 Hirayamashinmachi Yatsushiro-shi Kumamoto, Japan 866-8501

2. Equation
$$\frac{p^x - 1}{p - 1} = \frac{q^y - 1}{q - 1}$$

Let p and q be positive primes with $p \neq q$. Let x and y be positive integers with x, $y \ge 2$. In this section, we consider the equation

(2.1)
$$\frac{p^{x}-1}{p-1} = \frac{q^{y}-1}{q-1}.$$

2.1 The case of y = 3

Let y = 3. Then (2.1) leads

(2.2)
$$\frac{p^x-1}{p-1} = q^2 + q + 1.$$

Proposition 2.1 q is an odd prime.

Proof If q = 2 then p is an odd prime. And, from (2.2), $p(7 - p^{x-1}) = 6$ holds. Thus p = 3 and $7 - p^{x-1} = 2$, and so $3^{x-1} = 5$. Therefore we have a contradiction.

Proposition 2.2 *x* is odd.

Proof Suppose that x is even. If p is an odd prime then $(p^x - 1)/(p - 1)$ is even. This is a contradiction to proposition 2.1. From (2.2), If p = 2 then $(q+1)/2 = (2^{x-1} - 1)/q$. Thus $(q+1)/2 \equiv 1 \pmod{2}$, and so $q \equiv 1 \pmod{4}$. Furthermore, since $q \mid 2^{x-1} - 1$, it follows $\left(\frac{2}{q}\right) = \left(\frac{2^{x-1}}{q}\right) = \left(\frac{(2^{x-1} - 1) + 1}{q}\right) = \left(\frac{1}{q}\right) = 1$, where $\left(\frac{1}{2}\right)$ is Legendre's symbol. This leads $q \equiv \pm 1 \pmod{8}$. Since $q \equiv 1 \pmod{4}$, $q \equiv 1 \pmod{8}$ is obtained. Then (2.2) leads $2^x \equiv 4 \pmod{8}$, and so $2^{x-2} \equiv 1 \pmod{2}$. Thus x = 2. By substituting this result for (2.2), we have $q^2 + q - 2 = 0$, and so q = 1, -2. This is a contradiction to proposition 2.1.

Theorem 2.1 The equation (2.2) has a unique solution (p, q, x) = (2, 5, 5).

Proof Let x = 2e + 1 ($e \in \mathbb{N}$). Then (2.2) leads

(2.3)
$$\frac{p^{2^e}-1}{q(p-1)} = \frac{q+1}{p} := t (\in \mathbb{N}) .$$

Then, since q+1 is even with $q+1 \ge 4$, it follows $t = (q+1)/p \ne 1$. Furthermore (2.3) leads

(2.4)
$$(p^e + 1)(p^e - 1) = (pt - 1)(pt - t).$$

Then, since $(pt-1)-(pt-t) = t-1 \ge 1$, $p^e - 1 < pt - t \le pt - 1 < p^e + 1$ doesn't occur. Thus, from (2.4), we have

(2.5)
$$pt - t \le p^e - 1 < p^e + 1 \le pt - 1$$
.

If $pt-t < p^e - 1 < p^e + 1 < pt-1$, since q = pt-1, then $(p^e - 1)/q < (p^e + 1)/q < 1$. This is a contradiction to $(p^e - 1)(p^e + 1)/q \in \mathbb{N}$. Thus we have

(2.6)
$$\begin{cases} pt - t = p^e - 1\\ pt - 1 = p^e + 1 \end{cases}$$

That is t = 3, $p(3 - p^{e^{-1}}) = 2$, and so p = 2, e = 2. Therefore (p, q, x) = (2, 5, 5) is a solution of (2.2).

2.2 The case of p = 2 and $q \equiv 5 \pmod{8}$

Let p = 2. Then (2.1) leads

(2.7)
$$2^x - 1 = \frac{q^y - 1}{q - 1}$$
.

We note that q is an odd prime. From (2.7), since $2^x - 1$ is odd, we have $y \equiv 1 \pmod{2}$. Now let $y = 2f + 1 (f \in \mathbb{N})$. Then (2.7) leads

(2.8)
$$\frac{2^{x-1}-1}{q} = \frac{q+1}{2} \cdot \frac{(q^2)^f - 1}{q^2 - 1} (\in \mathbb{N}).$$

Since $(2^{x-1}-1)/q$ is odd, it follows that f is odd and $(q+1)/2 \equiv 1 \pmod{2}$, and so $q \equiv 1 \pmod{4}$.

From now on, we suppose $q \equiv 5 \pmod{8}$.

If x is even, from (2.8), then we have $\left(\frac{2}{q}\right) = \left(\frac{2^{x-1}}{q}\right) = \left(\frac{(2^{x-1}-1)+1}{q}\right) = \left(\frac{1}{q}\right) = 1$. Thus $q \equiv \pm 1 \pmod{8}$. Since

 $q \equiv 1 \pmod{4}$, $q \equiv 1 \pmod{8}$ holds. This is a contradiction to $q \equiv 5 \pmod{8}$. Thus x is odd.

Let $x \equiv 2e+1$ ($e \in \mathbb{N}$). Then, (2.8) leads

(2.9)
$$\frac{2^{e}-1}{\beta_{1}} \cdot \frac{2^{e}-1}{\beta_{2}} = \frac{q^{f}+1}{2} \cdot \frac{q^{f}-1}{q-1} = \frac{q^{f}+2^{e}}{\gamma_{1}} \cdot \frac{q^{f}-2^{e}}{\gamma_{2}}$$

where β_1 , β_2 , γ_1 and γ_2 are positive integers with $\beta_1\beta_2 = q$, $\gamma_1\gamma_2 = q - 2$ and $(2^e + 1)/\beta_1$, $(2^e - 1)/\beta_2$, $(q^f + 2^e)/\gamma_1$, $(q^f - 2^e)/\gamma_2 \in \mathbb{N}$. Let

$$A = \gcd\{(2^{e} + 1)/\beta_{1}, (q^{f} + 1)/2\}, \qquad B = \gcd\{(2^{e} + 1)/\beta_{1}, (q^{f} - 1)/(q - 1)\}$$
$$C = \gcd\{(2^{e} - 1)/\beta_{2}, (q^{f} + 1)/2\}, \qquad D = \gcd\{(2^{e} - 1)/\beta_{2}, (q^{f} - 1)/(q - 1)\}$$

Then A, B, C and D are odd. Furthermore they are relatively primes to each other.

Proposition 2.3 The following equations hold:

(a)
$$\binom{A}{D} = \frac{1}{\gamma_2} \binom{q-1}{-\beta_1} \binom{-\beta_2}{2} \binom{B}{C};$$

(b) $\gamma_1 = \beta_1 A^2 - \frac{q-1}{2} \beta_2 D^2;$

— 77 —

(c)
$$\gamma_2 = \frac{q-1}{2}\beta_1 B^2 - \beta_2 C^2$$
.

Proof We have the following equations:

$$\left\{ \begin{array}{ccc} 2^{e}+1=\beta_{1}AB\;; & q^{f}+1=2AC\;; & q^{f}+2^{e}=\gamma_{1}BC\;; \\ \\ 2^{e}-1=\beta_{2}CD\;; & q^{f}-1=(q-1)BD\;; & q^{f}-2^{e}=\gamma_{2}AD\;. \end{array} \right.$$

Thus $\gamma_1 BC = (q^f + 1) + (2^e - 1) = 2AC + \beta_2 CD$, and so $2A - \gamma_1 B + \beta_2 D = 0$. Similarly, we have Pu = o, where

 $P = \begin{pmatrix} 2 & -\gamma_1 & 0 & \beta_2 \\ \beta_1 & 0 & -\gamma_1 & q-1 \\ 0 & -\beta_1 & 2 & -\gamma_2 \\ -\gamma_2 & q-1 & -\beta_2 & 0 \end{pmatrix} \text{ and } \boldsymbol{u} = \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix}.$ Then $\operatorname{rank}(P) = 2$ holds. Here $P\boldsymbol{u} = \boldsymbol{o}$ leads equation (a). Otherwise, we

have $2\gamma_1 BC = \{(q^f + 1)(2^e + 1) - (q^f - 1)(2^e - 1)\} = 2\beta_1 A^2 BC - (q - 1)\beta_2 BCD^2$, and so equation (b). Similarly, equation (c) is obtained.

Furthermore, from now on, we suppose that q-2 is a prime.

Proposition 2.4 We have the following results:

- (a) If $q \equiv 5 \pmod{16}$ then $\beta_1 = q$, $\beta_2 = 1$, $\gamma_1 = q 2$, $\gamma_2 = 1$;
- (b) If $q \equiv 13 \pmod{16}$ then $\beta_1 = 1$, $\beta_2 = q$, $\gamma_1 = q 2$, $\gamma_2 = 1$.

Proof If $q \equiv 5 \pmod{16}$ then $(q-1)/2 \equiv 2 \pmod{8}$. Therefore, if $\beta_1 = 1$ and $\beta_2 = q$, from proposition 2.3(b), then $\gamma_1 \equiv -1 \pmod{8}$. This is a contradiction to $\gamma_1 \equiv 1$ or $3 \pmod{8}$. Thus $\beta_1 = q$ and $\beta_2 = 1$ hold. Then, from proposition 2.3 (b), $\gamma_1 \equiv 3 \pmod{8}$ holds. Thus $\gamma_1 = q-2$ and $\gamma_2 = 1$. Similarly, we can obtain result (b) from proposition 2.3(c).

Proposition 2.5 We have the following results:

(a) If $q \equiv 5 \pmod{16}$ with $q \neq 5$ then (2.7) has no solutions;

(b) If $q \equiv 13 \pmod{16}$ then (2.7) has no solutions.

Proof If a prime q > 5 which q-2 is a prime, then $q \equiv 1 \pmod{3}$ holds. Thus, from proposition 2.3 (c) and proposition 2.4, $C^2 \equiv -1 \pmod{3}$ holds. Therefore we have a contradiction.

Proposition 2.6 Let *d* be a square free integer. Let $\zeta = \alpha + \beta \sqrt{d}$ be an element of quadric field $\mathbb{Q}(\sqrt{d})$. Put $\zeta^n = \alpha_n + \beta_n \sqrt{d}$ for $n \in \mathbb{Z}$. Then both α_n and β_n are satisfied with the recurrence formula $X_{n+2} = 2\alpha X_{n+1} - N(\zeta)X_n$. **Proof** Since $\zeta^2 = \alpha^2 + \beta^2 d + 2\alpha\beta\sqrt{d} = \alpha^2 + \beta^2 d + 2\alpha(\zeta - \alpha)$, it follows $\zeta^2 = 2\alpha\zeta - N(\zeta)$. Thus $\zeta^{n+2} = 2\alpha\zeta^{n+1} - N(\zeta)\zeta^n$, and so $\alpha_{n+2} + \beta_{n+2}\sqrt{d} = 2\alpha(\alpha_{n+1} + \beta_{n+1}\sqrt{d}) - N(\zeta)(\alpha_n + \beta_n\sqrt{d})$. Therefore the proof is complete.

Theorem 2.2 We suppose that $q \equiv 5 \pmod{8}$ and q-2 is a prime. Then equation (2.7) has a unique solution (q, x, y) = (5, 5, 3).

Proof From proposition 2.5, we can show that (2.7) has no solutions except q = 5. Furthermore, it will be sufficient to prove this for the case of q = 5.

Then, from proposition 2.3 (c) and proposition 2.4 (a), we have $C^2 - 10B^2 = -1$. Let $\varepsilon = 3 + \sqrt{10}$ be a fundamental unit of $\mathbb{Q}(\sqrt{10})$. Put $\varepsilon^n = t_n + u_n\sqrt{10}$ for $n \in \mathbb{Z}$. Since $N(\varepsilon) = -1$, there exists $N \in \mathbb{N} \cup \{0\}$ such that $C = t_{2N+1}$ and $B = u_{2N+1}$. Furthermore, since $t_{2N+1} + u_{2N+1}\sqrt{10} = (t_{2N} + u_{2N}\sqrt{10})(3 + \sqrt{10})$, we have $C = 3t_{2N} + 10u_{2N}$ and $B = t_{2N} + 3u_{2N}$. Thus, from proposition 2.3 (a), $A = t_{2N} + 2u_{2N}$ and $D = t_{2N} - 5u_{2N}$. Therefore, by substituting there results to $2AC = 5^f + 1 = 5^f + N(\varepsilon^{2N})$, we have

$$(2.10) 5f = 5t22N + 32t2Nu2N + 50u22N.$$

Now, if $u_{2N} = 0$ then N = 0. Thus, since $t_0 = 1$ and $u_0 = 0$, it follows f = 1 and (A, B, C, D) = (1, 1, 3, 1). Furthermore, e = 1 and (q, x, y) = (5, 5, 3) are obtained by easy calculations. This is a solution of (2.7).

Suppose $u_{2N} > 0$. Hence $N \in \mathbb{N}$. Then, from (2.10), we have $t_{2N}u_{2N} \equiv 0 \pmod{5}$. Since $N(\varepsilon^{2N}) = 1$, $t_{2N} \not\equiv 0 \pmod{5}$. Thus $u_{2N} \equiv 0 \pmod{5}$ is obtained.

The equation (2.10) leads

 $(2.11) 5^{f+1} = (5t_{2N} + 16u_{2N})^2 - 6u_{2N}^2.$

Let $\eta = 5 + 2\sqrt{6}$ be a fundamental unit of $\mathbb{Q}(\sqrt{6})$. Put $\eta^m = s_m + v_m\sqrt{6}$ for $m \in \mathbb{Z}$. And let $\xi = 1 + \sqrt{6}$ be an element of $\mathbb{Q}(\sqrt{6})$. Put $\xi^l = r_l + w_l\sqrt{6}$. We note that the class number of $\mathbb{Q}(\sqrt{6})$ has one. Then, since $N(\eta) = 1$ and $N(\xi) = -5$, there exists $M \in \mathbb{N} \cup \{0\}$ such that $(s_M + v_M\sqrt{6})(r_{2L} + w_{2L}\sqrt{6}) = (5t_{2N} + 16u_{2N}) + u_{2N}\sqrt{6}$ is satisfied, where $(s_M - 6v_M)(r_{2N}) = (5t_{2N} + 16u_{2N})$

$$2L = f + 1. \text{ Thus } \begin{pmatrix} s_M & 6v_M \\ v_M & s_M \end{pmatrix} \begin{pmatrix} r_{2L} \\ w_{2L} \end{pmatrix} = \begin{pmatrix} 3t_{2N} + 16u_{2N} \\ u_{2N} \end{pmatrix}, \text{ and so}$$

$$(2.12) \qquad \begin{pmatrix} r_{2L} \\ w_{2L} \end{pmatrix} = \frac{1}{N(\eta^M)} \begin{pmatrix} s_M & -6v_M \\ -v_M & s_M \end{pmatrix} \begin{pmatrix} 5t_{2N} + 16u_{2N} \\ u_{2N} \end{pmatrix} = \begin{pmatrix} 5s_M t_{2M} + (16s_M - 6v_M)u_{2M} \\ -5v_M t_{2M} + (s_M - 16v_M)u_{2M} \end{pmatrix}.$$

Since $u_{2N} \equiv 0 \pmod{5}$, it follows $r_{2L} \equiv w_{2L} \equiv 0 \pmod{5}$.

On the other hand, the sequence $\{r_i\}$ is satisfied with $r_0 = 1$, $r_1 = 1$ and $r_{l+2} = 2r_{l+1} + 5r_l$. That is $\dots, 1, 1, 7, 19, 73, \dots$. And, we have $r_{l+2} \equiv 2r_{l+1} \pmod{5}$ for $l \in \mathbb{N} \cup \{0\}$. Thus $r_l \not\equiv 0 \pmod{5}$ holds for $l \in \mathbb{N}$. This is a contradiction to $r_{2L} \equiv 0 \pmod{5}$. Therefore, if $u_{2N} > 0$, then (2.7) has no solutions.

3. Equation $a^{x_1} - b^{y_1} = a^{x_2} - b^{y_2} = 1$

Let *a* and *b* be positive integers with *a*, b > 1. Let x_1 , x_2 , y_1 and y_2 be integers with $x_1 < x_2$ and $y_1 < y_2$. In this section, we consider the equation

$$(3.1) a^{x_1} - b^{y_1} = a^{x_2} - b^{y_2} = 1.$$

The equation (3.1) leads

(3.2)
$$\frac{a^{x_{12}}-1}{b^{y_1}}=\frac{b^{y_{12}}-1}{a^{x_1}}\in\mathbb{N},$$

where $x_{12} = x_2 - x_1$ and $y_{12} = y_2 - y_1$.

Furthermore, since $a^{x_1} - b^{y_1} = 1$, (3.2) leads

(3.3)
$$\frac{a^{x_{12}}-1}{a^{x_1}-1} = \frac{b^{y_{12}}-1}{b^{y_1}+1} \in \mathbb{N}.$$

Now, let $s = [x_{12}/x_1]$ and $t = [y_{12}/y_1]$, where $[\cdot]$ is Gauss' notation. Then we have

$$(3.4) \qquad \frac{a^{x_{12}}-1}{a^{x_1}-1} = a^{x_{12}-x_1} + \dots + a^{x_{12}-x_{1}} + \frac{a^{x_{12}-x_{1}}-1}{a^{x_1}-1}$$

and

(3.5)
$$\frac{b^{y_{12}}-1}{b^{y_1}+1} = b^{y_{12}-y_1}-\dots+(-1)^{t-1}b^{y_{12}-ty_1}+\frac{(-1)^t b^{y_{12}-tx_1}-1}{b^{y_1}+1}$$

Therefore, from (3.3), $x_1 | x_{12}$, $y_1 | y_{12}$ and $t \equiv 0 \pmod{2}$ hold. Thus there exist $e, f \in \mathbb{N}$ such that $x_{12} = ex_1$ and

 $y_{12} = 2 f y_1$ are satisfied. Let $X = a^{x_1}$ and $Y = b^{y_1}$. Then we have

(3.6) X - Y = 1. And (3.3) leads

(3.6)
$$\frac{X^{2}-1}{X-1} = \frac{Y^{2}-1}{Y+1}.$$

Furthermore, (3.6) and (3.7) lead

(3.8) $(Y+1)^{e+1} = X^{e+1} = Y^{2f+1} + 1 = (X-1)^{2f+1} + 1.$

Since $X^{e+1} = (X-1)^{2f+1} + 1 = \sum_{k=1}^{2f+1} (-1)^{k-1} C_k X^k$, we have $(2f+1)X \equiv 0 \pmod{X^2}$, and so $2f+1 \equiv 0 \pmod{X}$. Thus there exists $f_1 \in \mathbb{N}$ such that $2f+1 = Xf_1$ is satisfied. Then, since $X \equiv 1 \pmod{2}$ holds, we can suppose $X \ge 3$. And $X \equiv 1 \pmod{2}$ leads $Y \equiv 0 \pmod{2}$.

Similarly, since $Y^{X_{1}} = (Y+1)^{e+1} - 1 = \sum_{k=1}^{e+1} C_{k}Y^{k}$, we have $(e+1)Y \equiv 0 \pmod{Y^{2}}$, and so $e+1 \equiv 0 \pmod{Y}$. Thus

there exists $e_1 \in \mathbb{N}$ such that $e+1 = Ye_1$ is satisfied.

Here, if $Ye_1 = 2$ then Y = 2 and $e_1 = 1$. Therefore, by easy calculations, we can obtain a solution $(a, b, x_1, x_2, y_1, y_2) = (3, 2, 1, 2, 1, 3)$ of (3.1). That is $3^1 - 2^1 = 3^2 - 2^3 = 1$.

From now on, we suppose $Ye_1 \ge 4$. Then (3.8) leads

(3.9)
$$(Y+1)^{Y_{e_1}} = X^{Y_{e_1}} = Y^{X_{f_1}} + 1 = (X-1)^{X_{f_1}} + 1.$$

If Y = 2 then $e_1 \ge 2$. And, from (3.6) and (3.9), $3^{2e_1} - 2^{3f_1} = 1$ holds. This is a contradiction to theorem 1.1 in paper (5). Thus we can suppose $Y \ge 4$.

Since $X^{Y_{e_1}} = (X-1)^{X_{f_1}} + 1 = X^2 f_1 - X^3 f_1 \{ (Xf_1 - 1)/2 \} + \sum_{k=3}^{X_{f_1}} (-1)^{k-1} K_k X^k$, we have $X^2 f_1 \equiv 0 \pmod{X^3}$, and so

 $f_1 \equiv 0 \pmod{X}$. Thus there exists $f_2 \in \mathbb{N}$ such that $f_1 = X f_2$ is satisfied.

Similarly, since $Y^{X^2 f_2} = (Y+1)^{Ye_1} - 1 = Y^2 e_1 + (Y/2)Y^2 e_1(Ye_1 - 1) + \sum_{k=3}^{Ye_1} C_k Y^k$, we have $Y^2 e_1 \equiv 0 \pmod{(Y/2)Y^2}$, and so $e_1 \equiv 0 \pmod{Y/2}$. Thus there exists $e_2 \in \mathbb{N}$ such that $e_1 = (Y/2)e_2$ is satisfied.

Then (3.9) leads

 $(3.10) (Y+1)^{\left(\frac{Y}{2}\right)Ye_2} = X^{\left(\frac{Y}{2}\right)Ye_2} = Y^{X^2f_2} + 1 = (X-1)^{X^2f_2} + 1.$

Proposition 3.1 Let a, n, k and Z be positive integers with Z > 1. Then

(3.11)
$$\left(\frac{aZ^{k-2}}{k}\right) \cdot {}_{aZ''-1}C_{k-1} \in \mathbb{N}$$

hold for $3 \le k \le aZ^n$

Proof We have

$$_{aZ^{n}}C_{k}Z^{k} = \left\{ \left(aZ^{n} / k \right) \cdot _{aZ^{n} - 1}C_{k-1} \right\} Z^{k} = \left\{ \left(aZ^{k-2} / k \right) \cdot _{aZ^{n} - 1}C_{k-1} \right\} Z^{n+2} \in \mathbb{N} .$$

Therefore, any prime factor of k which is not a prime factor of Z is a prime factor of $a \cdot {}_{aX^{n-1}}C_{k-1}$. And the number of prime factors in k is k-2 or less. Thus (3.11) is satisfied.

Proposition 3.2 Let *n* be a positive integer with $n \ge 2$. Then there exist sequences $\{e_n\}$ and $\{f_n\}$ such that

(3.12) $(Y+1)^{\left(\frac{Y}{2}\right)^{n-1}Ye_n} = X^{\left(\frac{X}{2}\right)^{n-1}Ye_n} = Y^{X^n f_n} + 1 = (X-1)^{X^n f_n} + 1$ is satisfied.

Proof The proof is by induction on n. The equation (3.12) is already proven for n = 2. We suppose that (3.12) holds for n = k. Then, since

$$X^{\left(\frac{y}{2}\right)^{k-1}Ye_{k}} = (X-1)^{X^{k}f_{k}} + 1 = X^{k+1}f_{k} - X^{k+2}f_{k}\left(\frac{X^{k}f_{k}-1}{2}\right) + \sum_{j=3}^{X^{k}f_{k}}(-1)^{j-1}{}_{X^{k}f_{k}}C_{j}X^{j}$$
$$= X^{k+1}f_{k} - X^{k+2}f_{k}\left(\frac{X^{k}f_{k}-1}{2}\right) + X^{k+2}\sum_{j=3}^{X^{k}f_{k}}(-1)^{j-1}\left\{\left(\frac{X^{j-2}f_{k}}{j}\right)_{X^{k}f_{k}-1}C_{j-1}\right\}$$

holds, we have $X^{k+1}f_k \equiv 0 \pmod{X^{k+2}}$, and so $f_k \equiv 0 \pmod{X}$. Thus there exists $f_{k+1} \in \mathbb{N}$ such that $f_k = Xf_{k+1}$ is satisfied. Similarly, since

$$Y^{X^{k}f_{k}} = (Y+1)^{\binom{Y}{2}^{k-1}Ye_{k}} - 1 = \left(\frac{Y}{2}\right)^{k-1}Y^{2}e_{k} + \left(\frac{Y}{2}\right)^{k}Y^{2}e_{k}\left\{\left(\frac{Y}{2}\right)^{k-1}Ye_{k} - 1\right\} + \sum_{j=3}^{\binom{Y}{2}^{k-1}Ye_{k}}C_{j}Y^{j}$$
$$= \left(\frac{Y}{2}\right)^{k-1}Y^{2}e_{k} + \left(\frac{Y}{2}\right)^{k}Y^{2}e_{k}\left\{\left(\frac{Y}{2}\right)^{k-1}Ye_{k} - 1\right\} + \left(\frac{Y}{2}\right)^{k-1}Y^{3}\sum_{j=3}^{\binom{Y}{2}^{k-1}Ye_{k}}\left\{\left(\frac{Y^{j-2}e_{k}}{j}\right)^{\binom{Y}{2}^{k-1}Ye_{k-1}}C_{j-1}\right\}$$

holds, we have $(Y/2)^{k-2}Y^2e_k \equiv 0 \pmod{(Y/2)^kY^2}$, and so $e_k \equiv 0 \pmod{Y/2}$. Thus there exists $e_{k+1} \in \mathbb{N}$ such that

熊本高等専門学校 研究紀要 第9号(2017)

- 1
_

 $e_k = Ye_{k+1}$ is satisfied. Therefore (3.12) holds for n = k+1.

If $Ye_1 \ge 4$ is supposed, by applying proposition 3.2, we can show that (3.8) has no solutions. Thus the following theorem is satisfied.

Theorem 3 The equation (3.1) has a unique solution $(a, b, x_1, x_2, y_1, y_2) = (3, 2, 1, 2, 1, 3)$.

(Received: Sep. 25, 2017) (Accepted: Dec. 6, 2017)

References

- (2) M.A.Bennett, "On Some Exponential Equation of S.S.Pillai", Canad. J. Math. 53(5), pp.897-pp.922(1980).
- (3) R.Balasubramanian and T.N.Shorey, "On the Equation $a(x^m 1)/(x 1) = b(y^n 1)/(y 1)$ ", Math. Scand. 46, pp.177-pp.182(1980).
- (4) T.N.Shorey, "On the Equation $a(x^m 1)/(x 1) = b(y^n 1)/(y 1)$ (II)", Hardy-Ramanujan J. 7, pp.1-pp.10(1984).
- (5) Y.Motoda, "On the Equation $(p^{2e+1}+1)/(p+1) = (q^3+1)/(q+1)$ ", Res. Rep. Yatsushiro Nat. Coll. Tech. 13, pp.89-pp.92(1990).

⁽¹⁾ P.Mihăilescu, "Primary Cyclotomic Units and a Proof of Catalan's Conjecture", J. Reinen Angew. Math. 572, pp.167-pp.195(2004).