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Abstract In this paper, we consider two equations ( 1) /( 1) ( 1) /( 1)x yp q q q      and 1 1 2 2 1x y x ya b a b    . Especially, on 

( 1) /( 1) ( 1) /( 1)x yp q q q     , we study in the case of 3y  and in the case of 2p . And, without using Catalan’s theorem, we 

prove that 1 1 2 2 1x y x ya b a b     has a unique solution. 
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1. Introduction 

Let , , ,a b x y  be positive integers. The diophantine equation x ya b c  , where c  is a fixed nonzero integer, has 

been treated by many authors. In the case of 1c , the following Catalan’s theorem(1) is well known: 

 

Catalan’s theorem  Let , , , 1a b x y . Then 1x ya b   has a unique solution ( , , , ) (3, 2, 2, 3)a b x y  . 

 
M.A.Bennett(2) proved the following theorem: 

 

Theorem 1.1  if ,a b  and c  are nonzero integers with , 2a b , then the equation x ya b c   has at most two 

solutions in positive integers x  and y . 

 

R.Balasubramanian and T.N.Shorey(3),(4) treated the equation ( 1) /( 1) ( 1) /( 1)m na x x b y y     . Y.Motoda(5) treated the 

equation 2 1 3( 1) /( 1) ( 1) /( 1)ep p q q      , where p  and q  are distinct primes.  

In this paper, we consider two equations ( 1) / ( 1) ( 1) / ( 1)x yp p q q      and 1 1 2 2 1x y x ya b a b    . On 

( 1) / ( 1) ( 1) / ( 1)x yp p q q     , we study it in the case of 3y  and in the case of 2p . In each case, 

( 1) / ( 1) ( 1) / ( 1)x yp p q q      has a unique solution ( , , , ) (2, 5, 5, 3)p q x y   under some assumptions. 

Furthermore, the equation 1 1 2 2 1x y x ya b a b     has a unique solution 1 1 2 2( , , , , , ) (3, 2, 1, 1, 2, 3)a b x y x y  . This 

result is proved without using Catalan’s theorem. 
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2. Equation 1 1
1 1

x yp q
p q
 


 

 

Let p  and q  be positive primes with p q . Let x  and y  be positive integers with , 2x y . In this section, 

we consider the equation 

(2.1) 1 1
1 1

x yp q
p q
 


 

. 

 
2.1 The case of 3y   

Let 3y . Then (2.1) leads 

(2.2) 21 1
1

xp q q
p


  


. 

 

Proposition 2.1  q  is an odd prime. 

Proof If 2q  then p  is an odd prime. And, from (2.2), 1(7 ) 6xp p    holds. Thus 3p  and 17 2xp   , 

and so 13 5x  . Therefore we have a contradiction. 

□ 

Proposition 2.2  x  is odd. 

Proof Suppose that x  is even. If p  is an odd prime then ( 1) /( 1)xp p   is even. This is a contradiction to 

proposition 2.1. From (2.2), If 2p  then 1( 1) / 2 (2 1) /xq q   . Thus ( 1) / 2 1q  (mod 2 ), and so 1q (mod 4 ). 

Furthermore, since 1| 2 1xq   , it follows 
1 12 2 (2 1) 1 1 1

x x

q q q q

                                   
, where 

    
 is Legendre’s symbol. This 

leads 1q (mod 8 ). Since 1q (mod 4 ), 1q (mod 8 ) is obtained. Then (2.2) leads 2 4x  (mod 8 ), and so 

22 1x  (mod 2 ). Thus 2x . By substituting this result for (2.2), we have 2 2 0q q   , and so 1, 2q  . This is a 

contradiction to proposition 2.1. 

□ 

Theorem 2.1  The equation (2.2) has a unique solution ( , , ) (2, 5, 5)p q x  . 

Proof Let 2 1x e  ( e ). Then (2.2) leads  

(2.3) 
2 1 1 : ( )

( 1)

ep q t
q p p

 
  


 . 

Then, since 1q  is even with 1 4q  , it follows ( 1) / 1t q p   . Furthermore (2.3) leads 

(2.4) ( 1)( 1) ( 1)( )e ep p pt pt t     . 

Then, since ( 1) ( ) 1 1pt pt t t      , 1 1 1e ep pt t pt p        doesn’t occur. Thus, from (2.4), we have 

(2.5) 1 1 1e ept t p p pt       . 
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If 1 1 1e ept t p p pt       , since 1q pt  , then ( 1) / ( 1) / 1e ep q p q    . This is a contradiction to 

( 1)( 1) /e ep p q   . Thus we have 

(2.6) 
1

1 1

e

e

pt t p
pt p

      
. 

That is 3t  , 1(3 ) 2ep p   , and so 2, 2p e  . Therefore ( , , ) (2, 5, 5)p q x   is a solution of (2.2). 

□ 

 
2.2 The case of 2p  and 5q  (mod 8 ) 

Let 2p . Then (2.1) leads 

(2.7) 12 1
1

y
x q

q


 


. 

We note that q  is an odd prime. From (2.7), since 2 1x   is odd, we have 1y  (mod 2 ) . Now let 2 1y f  ( f  ). 

Then (2.7) leads 

(2.8) 
1 2

2

2 1 1 ( ) 1( )
2 1

x fq q
q q

   
  


 . 

Since 1(2 1) /x q   is odd, it follows that f  is odd and ( 1) / 2 1q  (mod 2 ) , and so 1q (mod 4 ). 

  From now on, we suppose 5q (mod 8 ). 

  If x  is even, from (2.8), then we have 
1 12 2 (2 1) 1 1 1

x x

q q q q

                                   
. Thus 1q (mod 8 ). Since 

1q (mod 4 ), 1q (mod 8 ) holds. This is a contradiction to 5q (mod 8 ). Thus x  is odd. 

 Let 2 1x e  ( e ). Then, (2.8) leads 

(2.9) 
1 2 1 2

2 1 2 1 1 1 2 2
2 1

e e f f f e f eq q q q
q   

     
    


, 

where 1 2 1, ,    and 2  are positive integers with 1 2 1 2, 2q q       and 1(2 1) /e  , 2(2 1) /e  , 1( 2 ) /f eq  , 

2( 2 ) /f eq   . Let 

1gcd{(2 1) / , ( 1) / 2}e fA q   , 1gcd{(2 1) / , ( 1) /( 1)}e fB q q     

 2gcd{(2 1) / , ( 1) / 2}e fC q   , 2gcd{(2 1) / , ( 1) /( 1)}e fD q q    . 

Then , ,A B C  and D  are odd. Furthermore they are relatively primes to each other. 

 
Proposition 2.3  The following equations hold: 

  (a) 2

12

11
2

qA B
D C




                     
; 

  (b) 2 2
1 1 2

1
2
qA D  


  ; 
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  (c) 2 2
2 1 2

1
2
q B C  


  . 

Proof We have the following equations: 
  12 1e AB  ; 1 2fq AC  ;   12f eq BC  ; 

  22 1e CD  ; 1 ( 1)fq q BD   ;   22f eq AD  . 

Thus 1 2( 1) (2 1) 2f eBC q AC CD       , and so 1 22 0A B D    . Similarly, we have P u o , where 

1 2

1 1

1 2

2 2

2 0
0 1

0 2
1 0

q
P

q

 
 

 
 

                  

 and 

A
B
C
D

              

u . Then rank( ) 2P   holds. Here P u o  leads equation (a). Otherwise, we 

have 12 {( 1)(2 1) ( 1)(2 1)}f e f eBC q q       2 2
1 22 ( 1)A BC q BCD    , and so equation (b). Similarly, equation (c) 

is obtained. 

□ 

Furthermore, from now on, we suppose that 2q  is a prime. 

 
Proposition 2.4  We have the following results: 
  (a) If 5q (mod16 ) then 1 2 1 2, 1, 2, 1q q        ; 

  (b) If 13q (mod16 ) then 1 2 1 21, , 2, 1q q        . 

Proof If 5q (mod16 ) then ( 1) / 2 2q  (mod 8 ) . Therefore, if 1 1   and 2 q  , from proposition 2.3(b), 

then 1 1  (mod 8 ). This is a contradiction to 1 1   or 3 (mod 8 ). Thus 1 q   and 2 1   hold. Then, from 

proposition 2.3 (b), 1 3  (mod 8 ) holds. Thus 1 2q    and 2 1  . Similarly, we can obtain result (b) from 

proposition 2.3(c). 

□ 

Proposition 2.5  We have the following results: 

(a) If 5q (mod16 ) with 5q  then (2.7) has no solutions; 

(b) If 13q (mod16 ) then (2.7) has no solutions. 

Proof If a prime 5q  which 2q  is a prime, then 1q (mod 3 ) holds. Thus, from proposition 2.3 (c) and 

proposition 2.4, 2 1C  (mod 3 ) holds. Therefore we have a contradiction. 

□ 

Proposition 2.6  Let d  be a square free integer. Let d     be an element of quadric field ( )d . Put 

n
n n d     for n . Then both n  and n  are satisfied with the recurrence formula 2 12 ( )n n nX X N X    . 

Proof Since 2 2 2 2 22 2 ( )d d d               , it follows 2 2 ( )N    . Thus 

2 12 ( )n n nN      , and so 2 2 1 12 ( ) ( )( )n n n n n nd d N d               . Therefore the proof is complete. 

□ 
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Theorem 2.2  We suppose that 5q (mod 8 ) and 2q  is a prime. Then equation (2.7) has a unique solution 

( , , )q x y  (5, 5, 3) . 

Proof From proposition 2.5, we can show that (2.7) has no solutions except 5q . Furthermore, it will be 

sufficient to prove this for the case of 5q . 

Then, from proposition 2.3 (c) and proposition 2.4 (a), we have 2 210 1C B  . Let 3 10   be a 

fundamental unit of ( 10) . Put 10n
n nt u    for n . Since ( ) 1N   , there exists {0}N    such that 

2 1NC t   and  2 1NB u  . Furthermore, since 2 1 2 1 2 210 ( 10)(3 10)N N N Nt u t u     , we have 2 23 10N NC t u   

and 2 23N NB t u  . Thus, from proposition 2.3 (a), 2 22N NA t u   and 2 25N ND t u  . Therefore, by substituting there 

results to 22 5 1 5 ( )f f NAC N     , we have 

(2.10) 2 2
2 2 2 25 5 32 50f
N N N Nt t u u   . 

  Now, if 2 0Nu   then 0N  . Thus, since 0 1t   and 0 0u   , it follows 1f   and ( , , , ) (1, 1, 3, 1)A B C D  . 

Furthermore, 1e  and ( , , ) (5, 5, 3)q x y   are obtained by easy calculations. This is a solution of (2.7). 

  Suppose 2 0Nu  . Hence N  . Then, from (2.10), we have 2 2 0N Nt u  (mod 5 ). Since 2( ) 1NN   , 

2Nt  0 (mod 5 ) . Thus 2 0Nu  (mod 5 ) is obtained.  

  The equation (2.10) leads 

(2.11) 1 2 2
2 2 25 (5 16 ) 6f
N N Nt u u    . 

Let 5 2 6    be a fundamental unit of ( 6) . Put 6m
m ms v    for m . And let 1 6    be an element 

of ( 6) . Put 6l
l lr w   . We note that the class number of ( 6)  has one. Then, since ( ) 1N    and 

( ) 5N   , there exists {0}M    such that 2 2 2 2 2( 6)( 6) (5 16 ) 6M M L L N N Ns v r w t u u      is satisfied, where 

2 1L f  . Thus 2 22

22

5 166 N NM M L

NM M L

t us v r
uv s w

                         
, and so 

(2.12) 2 22 2 2

22 2 2

5 166 5 (16 6 )1
5 ( 16 )( )

N NL M M M M M M M
M

NL M M M M M M M

t ur s v s t s v u
uw v s v t s v uN 

                                     
. 

Since 2 0Nu  (mod 5 ), it follows 2 2 0L Lr w  (mod 5 ). 

  On the other hand, the sequence { }lr  is satisfied with 0 11, 1r r   and 2 12 5l l lr r r   . That is 

,1, 1, 7, 19, 73,  . And, we have 2 12l lr r  (mod 5 ) for {0}l   . Thus lr  0 (mod 5 ) holds for l  . This is a 

contradiction to 2 0Lr  (mod 5 ). Therefore, if 2 0Nu  , then (2.7) has no solutions. 

□ 
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3. Equation 1 1 2 2 1x y x ya b a b     

Let a  and b  be positive integers with , 1a b . Let 1 2 1, ,x x y  and 2y  be integers with 1 2x x  and 1 2y y . 

In this section, we consider the equation 

(3.1) 1 1 2 2 1x y x ya b a b    . 

  The equation (3.1) leads 

(3.2) 
12 12

1 1

1 1x y

y x

a b
b a
 

  , 

where 12 2 1x x x   and 12 2 1y y y  . 

 Furthermore, since 1 1 1x ya b  , (3.2) leads 

(3.3) 
12 12

1 1

1 1
1 1

x y

x y

a b
a b

 
 

 
 . 

Now, let 12 1[ / ]s x x  and 12 1[ / ]t y y , where [ ]  is Gauss’ notation. Then we have 

(3.4) 
12 12 1

12 1 12 1

1 1

1 1
1 1

x x sx
x x x sx

x x

a aa a
a a


  

   
 

  

and 

(3.5) 
12 12 1

12 1 12 1

1 1

11 ( 1) 1( 1)
1 1

y y txt
y y y tyt

y y

b bb b
b b


   

    
 

 . 

Therefore, from (3.3), 1 12|x x , 1 12|y y  and 0t  (mod 2 ) hold. Thus there exist ,e f   such that 12 1x ex  and 

12 12y fy  are satisfied. Let 1xX a  and 1yY b . Then we have 

(3.6) 1X Y  . 
And  (3.3) leads 

(3.6) 
21 1

1 1

e fX Y
X Y
 


 

. 

Furthermore, (3.6) and (3.7) lead 

(3.8) 1 1 2 1 2 1( 1) 1 ( 1) 1e e f fY X Y X          . 

  Since 2 11 2 1 1
2 11

( 1) 1 ( 1)fe f k k
f kk

X X C X  


     , we have (2 1) 0f X  (mod 2X ), and so 2 1 0f   (mod X ). 

Thus there exists 1f   such that 12 1f Xf   is satisfied. Then, since 1X  (mod 2 ) holds, we can suppose 3X  . 

And 1X  (mod 2 ) leads 0Y  (mod 2 ). 

  Similarly, since 1
11

11
( 1) 1 eXf e k

e kk
Y Y C Y


    , we have ( 1) 0e Y  (mod 2Y ), and so 1 0e  (modY ). Thus 

there exists 1e   such that 11e Ye   is satisfied. 

  Here, if 1 2Ye   then 2Y   and 1 1e  . Therefore, by easy calculations, we can obtain a solution 1 2 1( , , , , ,a b x x y   

2 ) (3, 2, 1, 2, 1, 3)y   of (3.1). That is 1 1 2 33 2 3 2 1    . 

  From now on, we suppose 1 4Ye  . Then (3.8) leads 

(3.9) 1 1 1 1( 1) 1 ( 1) 1Ye Ye Xf XfY X Y X       . 
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If 2Y   then 1 2e  . And, from (3.6) and (3.9), 1 12 33 2 1e f   holds. This is a contradiction to theorem 1.1 in paper 

(5). Thus we can suppose 4Y  . 

  Since 11 1

1

2 3 1
1 1 1 3

( 1) 1 {( 1) / 2} ( 1)XfYe Xf k k
Xf kk

X X X f X f Xf C X


        , we have 2

1 0X f  (mod 3X ), and so 

1 0f  (mod X ). Thus there exists 2f   such that 1 2f Xf  is satisfied. 

  Similarly, since 2 12 1

1

2 2
1 1 1 3

( 1) 1 ( / 2) ( 1) YeX f Ye k
Ye kk

Y Y Y e Y Y e Ye C Y


       , we have 2
1 0Y e  (mod 2( / 2)Y Y ), and 

so 1 0e  (mod / 2Y ). Thus there exists 2e   such that 1 2( / 2)e Y e  is satisfied. 

  Then (3.9) leads 

(3.10)     2 22 22 2 2 2( 1) 1 ( 1) 1
Y YYe Ye X f X fY X Y X       . 

 
Proposition 3.1  Let , ,a n k  and Z  be positive integers with 1Z  . Then 

(3.11) 
2

11n

k

kaZ

aZ C
k





      
  

hold for 3 nk aZ   

Proof We have 
      2 2

1 11 1
/ /n n n

k n k k n
k k kaZ aZ aZ
C Z aZ k C Z aZ k C Z 

  
     . 

Therefore, any prime factor of k  which is not a prime factor of Z  is a prime factor of 1 1n kaX
a C  . And the number 

of prime factors in k  is 2k  or less. Thus (3.11) is satisfied. 

□ 

Proposition 3.2  Let n  be a positive integer with 2n . Then there exist sequences { }ne  and { }nf  such that 

(3.12)    1 1
2 2( 1) 1 ( 1) 1
n nY Y n n

n n n n
Ye Ye X f X fY X Y X

 

        
is satisfied. 

Proof The proof is by induction on n . The equation (3.12) is already proven for 2n . We suppose that (3.12) 

holds for n k . Then, since 

   1
2 1 2 1

3

1( 1) 1 ( 1)
2

k
k kY kk k

k
k

X fk
Ye X f k k j jk

k k jX f
j

X fX X X f X f C X


  



            
  

        
2

1 2 2 1
11

3

1 ( 1)
2

k
k

k
k

X fk j
k k k jk k

k k jX f
j

X f X fX f X f X C
j


   




                          
  

holds, we have 1 0k
kX f  (mod 2kX  ), and so 0kf  (mod X ). Thus there exists 1kf    such that 1k kf Xf   is 

satisfied. Similarly, since 

  
 

  1
21

2
1

2

1 1
2 2

3

( 1) 1 1
2 2 2

kY
kkYk kk

kY
k

Yek k k
YeX f j

k k k jYe
j

Y Y YY Y Y e Y e Ye C Y







 



                                       
  

      
 

  1
2

1
2

1 1 1 2
2 2 3

11
3

1
2 2 2 2

kY
k

kY
k

Yek k k k j
k

k k k jYe
j

Y Y Y Y Y eY e Y e Ye Y C
j





   




                                                                     
  

holds, we have 2 2( / 2) 0k
kY Y e  (mod 2( / 2)kY Y ), and so 0ke  (mod / 2Y ). Thus there exists 1ke    such that 
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1k ke Ye   is satisfied. Therefore (3.12) holds for 1n k  . 

□ 

 If 1 4Ye   is supposed, by applying proposition 3.2, we can show that (3.8) has no solutions. Thus the following 

theorem is satisfied. 
 
Theorem 3  The equation (3.1) has a unique solution 1 2 1 2( , , , , , ) (3, 2, 1, 2, 1, 3)a b x x y y  . 
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