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in Positive Integers (x, y) on an Equation a* —b" =2
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Abstract Let a, beN\{l} . We show that an equation «*—5" =2 has at most one solution in positive integers

(x, v). Espesially, when ab=1 mod 2 and ged(a, b)=1 is satisfied, under certain six conditions, we show an

equation a*—b" =2 has at most one solution by using “minimal unit”. And, in its proof, we can find existence

conditions of solutions.
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1. INTORODUCTION

The existence of solution in positive integers (x, y) on Diophantine equation «* -5 =c¢ is studied by many authors.
Especially, in the case of ¢=1, Catalan’s conjecture that if «, b, x and y are positive integers greater than one then
a* —b" =1 has no solutions except 3*-2°=1 is well-known. This was proved by P.Mihdilescu in 2002[1]. Let p and
g be prime numbers. On the number of solutions, an equation p*-¢” =2", where h is a positive integer , has at
most one solution and an equation p*—5»" =c, where b and c¢ are positive integers relative to prime p , has at most
one solution (x, y) with y>1 if b>c are shown in [2].

Let a, beN*=N\{l}. In this paper, we consider the existence conditions and the number of solutions in
(x, ¥Y)eNxN on an equation
(1.1) a"-bp"=2.

Let ab=0, a+b=0 mod 2. Then «"-b"=1 mod 2 is satisfied. Thus (1.1) has no solutions.

Let a, b=0 mod 2 and gecd(a, b)=2.Then a*—b" =0 mod ged(a, b) is satisfied. Thus (1.1) has no solutions.
Let ged(a, b)=2.1f x, y>2,then a*-b"=0 mod 4 is satisfied. Thus (1.1) has no solutions in (x, y) e N*xN*.

Therefore ged(a, b)=2 and (x—-1)(y—1)=0 are necessary conditions so that (1.1) with ab=0 mod 2 has
solutions.

Let x,=log,(b+2), y,=log,(a=2) if a#2 and y,=- if a=2.Then the following proposition is satisfied.

Proposition 1 Let ab=0 mod 2.
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1) In the case of gcd(a, b) =2, the equation (1.1) has no solutions.
2) In the case of gcd(a, b)=2, the equation (1.1) has solutions, if and only if x,eN or y, eNis satisfied. And

there is a unique solution (x,, 1) or (1, y,).

Let ab=1 mod 2 and gcd(a, b)=1.Then a*-b"=0 mod gecd(a, b) is satisfied. Thus, (1.1) has no solutions.

Therefore gcd(a, b)=1 is a necessary condition so that (1.1) with @b =1 mod 2 has solutions.

We put six conditions as follows;

(1) a=3, b=1mod 4 and x=1, y=0 mod 2,

(2) a=3,b=3 mod 4 and x=1, y=0 mod 2,

Il
—

3) a
4
) a

,b=3mod 4 and x=0, y=1 mod 2,

,b=3mod 4 and x=0, y=1 mod 2,

Q
I
%)

I
o8

,b=1mod 4 and x=1, y=1 mod 2,
(6) a=1,b=3 mod 4 and x=1, y=1 mod 2.

Then we can obtain the follwing proposition.

Proposition 2 Let ab=1 mod 2 and ged(a, b)=1.

1) If all of the conditions (1)-(6) are not satisfied, the (1.1) has no solutions.
2) If one of the conditions (1)-(6) is satisfied, the (1.1) has at most one solution.

Indeed, we can obtain the first half of Proposition 2 from a*—5"=0 mod 4. We consider the second half of

Proposition 2 in later sections.

2. PRELIMINARIES
In this section, we prepare two lemmas. These are used for the proof of Proposition 2 in section 4

Lemma 2.1 Let a=3 mod 4 and xeN. An inequation a*>4x+3 is satisfied except two cases of (a, x)

=3, D, @3, 2.

Proof Let f(x)=a"—4x-3. Because f(x) is a monotone increasing function and f(l)=a—7 are satisfied, the
result is led in the case of a>7. In the case of a=3, we have f(2)<0, f(3)>0. Thus an inequation 3*>4x+3 for
x>3 is satisfied.

U]

Lemma 2.2 Let ab=1 mod 2 and (a, b)=1, and one of the condtions (1)-(6) be satisfid. Then we putx and y as

follows;

1) x=2m+1, y=2n (meN =NuU{0}, neN), if condition (1) or (2) is satisfied,

2) x=2m, y=2n+1 (meN, neN"), if condition (3) or (4) is satisfied,
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3) x=2m+1, y=2n+1 (m, neN"), if condition (5) or (6) is satisfied.

m

If (x, y) isa solutin of (1,1), then two inequations «""' >5" and b""'>a" are satisfied.

Proof In the case of x=2m+1 and y=2n, we have o*">a>"' >b* and b -a’" >b" —a™" =(a*"" -2)—a™"

=(a-1)a’" —2>2(a*" —1)>0 . Thus the result is obtained. In the other cases, we can similarly lead the result.

3. MINIMAL UNIT

In this section, we define “minimal unit” and we show some propeties on “minimal unit”

Let ab=1 mod 2 and (a, b)=1.And one of the condtions (1)-(6) is satisfid. Then we put

a, if condition (1) or (2) is satisfied,
(3.1) k={b, if condition (3) or (4) is satisfied,
ab, if condition (5) or (6) is satisfied .

There are AeN and deN that k=4’d and d doesn’t conculde square numbers. Then we remark that
d=3 mod 4 is satisfied from k=3 mod 4. Let e=¢+u/d be a fundamental unit of quadratic field Q(d) and we
put & =¢, + ujx/; for jeN.Thena “minimal unit” 5 =s+wk isdefind as follows.

1) Inthe case of A=1,let n=c=t+ulk (Ss=t, v=u).

2)Inthecase of A#1 and Alu,let n=c=t+w/AWk (©s=t,v=uld).

3) In the case of A=1 and /1/14 , there isanumber /eN that 1|y, and ﬂ/uj for 1<j<I.

let p=e'=t,+@' /I ANk (©s=t, v=u/2).

=
2

Furthermore, let 7/ =s,+v,J/d and = z Gy (v?) for jeN.
i=0

Lemma 3.1 For j;eN, the following relations are satisfied.

1) N@np')=1.
2) s;=1mod k.

3) v, =vo,.

4) {a)1 =1, w,=2s

@, =250, -0,

5) |0 mod 2, ifj=0 mod 2
“i= 1 mod 2, ifj=1mod 2’

6) w,=jmod k for j=1 mod 2.

Proof 1) If fr=u mod 2 is satisfied, N(g)=t>+u’d=0 mod 2 is obtained. It’s contradictory to N(g)=1 or
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N(¢)=-1. Thus the case of /=u mod 2 doesn’t occur. In the rest cases, we have N(¢)=1 mod 4 from d=3 mod 4.

Thus N(s)=1 is satisfied. This leads N(n/)=1.
2) From N(’)=s;+kv;=1,wehave s;=1 mod k.

)
3)Wehave v, =) C,. s’ ""v"'k' =ve, by direct calculations.
i=0

4) From 5’ =(s +kv)(sj +vj.«/%) , we have s, =ss, +kvw, and v, =vs, +sv,. These lead v, ,=2sv,,-N(n)v,. Thus

®,,,=2s0,, -0, holds from N(n’)=1 and v, =ve,.And we have o, =1, ®, =2s Dby easy calculations.

5) This result is obtaind from the recurrence formula on the previous item.

o/l

6) From s’ =1 mod k,we have o, =,s"'=j mod k for ;=1 mod 2.

Lemma 3.2 Relations k|w, and & /a)k are satisfid.

Proof Inthe case of k=3, wehave w,=18 from 7=g=2++/3.Thus 3|w, and 32/0)3 are satisified.

In the case of k>3, we have

3.1) o, =3k>*"+ kz{y(_lCzs“‘}v2 +v* : 3/(szs“‘2”(1{\»2)"2} .

i=2
Thus k|, and K fo, is satisified.
On the other hand, we have vy, =3s2v, +k from 7% =@") =(s, +v~k)' . It leads o, =, (3s> + b w?) from

v, =va;.

From lemma 5.1, we have k|@, and k{3s; +k’e; . Thus k|e, and K fo, are satisified in the case of k>3.
Il
Lemma 3.3 For j=1mod 2 and neN, the following relations are satisfied.
1) k"|w,; isequivalentto k"|;.

2) k" |a)k” , k“l/a)k,,

Proof From 7 =(n") =(s, +v,Vk)’, we have

il
2

() 0, =0,% Cousl ™ W)
i=0

Thus “’m/ o, =j mod k is satisfied.

Now we suppose k" |w, and k" / o, are satisfied. We have the following results;

1) kn+l |wj is equivalent to k"+1 ‘] ,
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2) kn+l |a)k,,>1 , kn+2/a)km|

Therefore the results are led by lemma 3.2 and the inductive method.

4. PROOF OF PROPOSITION

Let ab=1mod 2 and (a, b)=1, and one of the conditions (1)-(6) be satisfied. Futhermore we use the notations

defined in section 2 and section 3.

Now we put
X ¥ x v
@4.1) &=2 ;b +\/axby:%+a”’b”\/z,

Then we have

2 2
a*+b a*-b’
N(&) = —-a'b’ = .

If the equation a*—b" =2 holds, & is a unit of quadratic extended field Q(+/@).Thus there is an odd number

that ve, =a"b" is satisfied.

Nextlet zeN be ged(a, u)=gedd, u)=1.And we put v=pua™b" , where m,, n,eN".

Obviously, in the case of wu=1, (1.1) has no solutions. That is, x#=1 is a necessary condition that (1.1) with
ab=1mod 2 and (a, b)=1 has any solutions.

Furthermore we put @, =a"™"b"™" =a"b" .

We suppose that condition (1) or (2) holds. If M >0 is satisfied, we have «" |w,.Itleads «"|; from lemma 3.3.

And, from lemma 2.1, we have

a'—1_ (4M+3)-1

i—1
42) L=2>
(4.2) > 5

=2M +1

except two cases of (a, M)=(3, 1), (3, 2) . Thus, the follwing inequation is satisfied.
(4'3) a"b" > aMbN — Wj — ZjCZMSjiZH(aVZ)i > a2M+lv2 > a2m+1 .
i=0

Because (4.3) leads »" >a™"', if (1.1) has solutions under the above conditions, it is contoradictry to the result of
lemma 2.2. Therefore, if the above conditions hold, a pair (a, b, x=2m+1, y=2n) satisfied with n:s+a’”b”x/;
holds the equation «*—5"=2. In the cases of (a, M)=(3, 0), 3, 1) and (3, 2), one pair (a, b, x, )=, 5, 3, 2)
holds the equation a* -5’ =2. Indeed, when a =3 is satisfied, we have M =m from n=c=2++/3. Thus its result
is obtained by substituting the equation 3*"*' —p™ =2 for m=0, 1, 2 directly.

We suppose that condition (3) or (4) holds. Then we similary obtain a result that one pair (a, b, x=2m, y=2n+1)
with n=s+a"b"\/b satiesfies an equation «*—b"=2. And, in the case of (b, N)=(3, 1), (3, 2) , An equation

a*—b’ =2 doesn’t hold.
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We suppose that condition (5) or (6) holds. Then we similary obtain a result that one pair (a, b, x=2m+1, y=2n+1)

with n=s+a"p"Jab satiesfies an equation a* —b" =2.
Thus the second half of Proposition 2 is proved.

Considering the circumstances mentioned above, the following theorem is satisfied. This theorem means existence

conditions of solution in (1.1) with ab=1 mod 2 and (a, b)=1.

Theorem 1 Let ab=1 mod 2 and (a, b)=1.
1) One pair (a, b, x, y)=(3, 5, 3, 2) satiesfies an equation a*—-b" =2.

2) In the case of a=3 mod 4 except a=3, if n=s+a"b’\Ja then one pair (a, b, x=2m+1, y=2m) satisfies

an equation |a*-b"|=2.
3) In the case of ab=3 mod 4, if n=s+a"b"Jab then pair (a, b, x=2m+1, y=2m+1) satisfies an equation

la*=b" |=2.

5. APPENDIX

Proposition3 Let ab=1 mod 2 and (a, b)=1.

1) The equation (1.1) can’t have two solutions satisfying both condition (3) and (6).
2) The equation (1.1) can’t have two solutions satisfying both condition (2) and (4).
3) The equation (1.1) can’t have two solutions satisfying both condition (1) and (5).

Proof 1) Let a=1, 5=3 mod 4. We suppose that there are four numbers x =0, y,=x,=y,=1 mod 2 that

a"—b" =g —b* =2 . The result is led by using 2-adic valuation v,(a) . Now we have v,(a—1)<v,(a" -1)

=v,(b" +1)=v,(b+1). On the other hand, we have v,(a—1)=v,(a” -1)= v,(b"> +1)=v,(b+1). Thus the contradiction

occurs.
2) Let a=bh=3 mod 4. We suppose that there are four numbers x, y,=1 mod 2 and x=y,=1, y,=x,=0 mod 2

that a" —b”" =a™ —b* =2 . Then the result is led by using Jacobi symbol [%} .

We have (Ej:(_—l]:—l and (EJ:LEJ from «"-b6"=2. And we have [g]:—[éj and [EJ:I from
a a b b a a b
a*™ —p**" =2 . Thus (é] = (%] =1 1is obtained. Therefore (é)(%j =1 is satisfied.
a a

However this is contoradictry to the quadratic reciprocity law that if a=b=3 mod 4 then (—J(;] =-1 is satisfied.
a

3) Let a=3 b=1mod 4 . We suppose that there are four numbers x =y =x,=1, y,=0 mod 2 that

a" —b" =a™ -b” =2 . From a=3 mod 4, there is an odd number «' that a=2a"+1 is satisfied. In the case of

’

a'>1, there is an odd prime number p that p|a’ is satisfied. Thus we have a=1mod p from a=2d"+1.

Research Reports of NIT, Kumamoto College. Vol.7 (2015)
— 78—



Therefore 5" =" =-1 mod p is obtained from " -b" =a™—-b" =2 . Thus the contradiction occurs, because
b" =b" =-1 mod p leads O,(h)=1 mod 2, where notation O,(b) is the order of » modulo a prime p .
Now we put «'=1. That is a=3. We have that only pair (a, b, x, y)=(3, 5, 3, 2) satiesfies (1.1) with condition

(1) from theorem 1. On the other hand, if ab=15 is satisfied, only one pair (a, b, x, y)=(5, 3, 1, 1) satisfis (1.1) with

condition (5). Thus (1.1) can’t have two solutions satisfying both condition (1) and (5).
]

Thus, the follwing theorem is obtained from proposition 1-3.

Theorem 2 Let a,beN”. The equation a*—b” =2 has at most one solution in positive integers (x, y).
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