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Rees property and its related properties of modules 
 
 

Satoru Isogawa＊ 
 

Abstract Properties of ideals of a commutative Noetherian local ring or a Noetherian standerd graded commutative algebra 
over a field, called the Rees property, the second Rees property, the m-fullness and the fullness, can naturally be extended to the 
properties of modules. We introduce the property of modules called “weak” m-fullness and “weak” fullness. We show that the 
Rees property and the m-fullness are equivalent in the class of modules with weak m-fullness, and also that the second Rees 
property and the fullness are equivalent in the class of modules with weak fullness. 
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1. Introduction 

Let R  be a Noetherian standard graded commutative algebra over a field k , with its irrelevant maximal ideal m , 

i.e., 
0

i
i

R R
∞

=

=⊕  with 0R k= , 1[ ]R k R=  and 
1

i
i

R
∞

=

=⊕m . For any finitely generated graded R -module M . We denote 

the length of M  by ( )l M , the minimal number of generators of M  by ( ) ( )( )/M l M Mµ = m and put 

( ) ( ){ }sub : a graded submodule  with /M N N M l M N= ⊆ < ∞ . For any ( )subN M∈ , we denote the type of N in M  by 

( ) ( ) ( )( ): /M M
N N l N Nτ τ= = m  and the t-value of N in M  (Definition 3.3 in [5]) by ( ) ( ) ( )( )

1

minM ll R
t N t N t N

∈
= = , where 

{ }: : :
M

N S N S x M Sx N= = ∈ ⊆ for a subset S  of R  and ( ) ( ): /l M
t N l N l N= . Further we denote: 

( ) ( ) ( ) ( ){ }: max , subM N N N N N N Mmmm   ′ ′ ′= = ⊇ ∈ ,  

( ) ( ) ( ) ( ){ }: max , subM N N N N N N Mτ τ τ ′ ′ ′= = ⊇ ∈ . 

(1) A homogeneous ideal I  of R is called m -full if :I l I=m  for some 1l R∈ , i.e., ( ) ( )I t Iµ = m  ([9]) . 
(2) A homogeneous ideal I  of R is called  full if : :I I l=m  for some 1l R∈ , i.e., ( ) ( )I t It =  ([2]). 
(3) A homogeneous ideal I  of R  has the Rees property if if ( ) ( )J Iµ µ≤  for all homogeneous ideal J I⊇ , i.e. 

( ) ( )I Iµ µ=  ([9]). 
(4) A homogeneous ideal I  of R  has the second Rees property if ( ) ( )J Iτ τ≤  for all homogeneous ideal J I⊇ , 

i.e. ( ) ( )I Iτ τ= . 
The notion of the second Rees property has been introduced by J. Watanabe in a private conversation with T. Harima in 
2008. 

These properties of ideals, which have been studied by many authors (e.g., [1]- [4], [7]-[11]), are naturally extend to 
the properties of submodules of a given module as follows:  
Definition 1. Let M  be a finitely generated graded R -module. 

(1) ( ) ( ){ } ( ) ( ) ( ){ }-Full : s   -     ubThe set of full graded submodules oM N M Nf M t Nm= = ∈ =mm m� . 

(2) ( ) ( ){ } ( ) ( ) ( ){ }Full : s    u b  The set of full graded submodules of MM N M N t Nt= = ∈ =� . 

(3) ( ) ( ){ } ( ) ( ) ( ){ }       Rees : subThe set of Rees graded submodules of MM N M N Nmm = = ∈ = . 

(4) ( ) ( ){ } ( ) ( ) ( ){ }   SRe      es : subThe set of second Rees graded submodules of MM N M N Ntt = = ∈ = . 
  We have already studied these properties in purely combinatorial way in [6]. There have been intorduced the notions 
“weak” m-fullness, “weak” fullness, “restricted” second Rees property and “restricted” fullness in [6]. In the case of modules, 
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these notions can be sated as follows: 
Definition 2. Let M  be a finitely generated graded R -module. 

(1) ( ) ( ){ } ( ) ( ) ( ){ }   -     w- -Full : subThe set of full graded submodules ofM tM N M N Nm= = ∈ ≥m m m� . 

(2) ( ) ( ){ } ( ) ( ) ( ){ }w-Full : s u  b    The set of full graded submodules of MM N M N t Nt= = ∈ ≥� . 

(3) ( ) ( ){ } ( ) ( ) ( ) ( ){ }       Full : sub : The set of restrictedly full graded submodules of MM N M N N t Nmt ′ = = ∈ = =m� . 

(4) ( ) ( ){ } ( ) ( ) ( ) ( ){ }        SRees : sub : The set of restricted second Rees graded submodules of MM N M N N Nmtt  ′ = = ∈ = =m . 

  Let ( ) ( ):=Hom ,k k∨  be the k -dual operator. We define a inclusion-reversing operator ( ) ( ) ( ):sub subM M ∨→  
as follows: 
Definition 3. Let M  be a finitely generated graded R -module with ( )l M < ∞ . For any ( )subN M∈ , 

( ) ( ): / subN M N M∨ ∨= ∈  

where we assume that ( )/M N M∨ ∨⊆  via ( )/M N Mπ ∨∨ ∨→ : the k -dual of the natural projection : /M M Nπ → . 
On the other hand, a homogeneous ideal I R⊆  is said "having the weak Lefschetz property" if there exists 1l R∈  

such that each map ( ) ( ) 1
: / /

i i
l R I R I

+
× → , defined by multiplication by l , is surjective or injective for any integer i  

where ( )/
i

R I  is the i -th graded compnent of /R I . This property of ideals have also been studied by many authors, 

for example, consult the listed papers in the reference of [4]. If a homogeneous ideal I R⊆  with ( )/l R I < ∞  has "the 
weak Lefschetz property", then it is well known that /R Ih  ( ( ) ( )/ : dim /R I k i

h i R I= ), the Hilbert function of /R I , is 
unimodul, i.e., ( ) ( ) ( )/ / /0 1R I R I R Ih h j h j≤ ≤ ≥ + ≥   for some integer 0j ≥ . We extend this property to modules as 
follows: 
Definition 4. Let M  be a finitely generated graded R -module. For any ( )subN M∈ , we call that N  has "restricted 
weak Lefschetz property w.r.t. M " if there exists 1l R∈  such that each map ( ) ( ) 1

: / /
i i

l M N M N
+

× → , defined by 

multiplication by l , is surjective or injective for any integer i  where ( )/
i

M N  is the i-th graded compnent of /M N , 

and further if /M Nh ( ( ) ( )/ : dim /M N k i
h i M N= ), the Hilbert function of /M N , is unimodal. In this case, l  is called a 

"Lefschetz element of N  w.r.t M ". 
Throughout this paper, we study the Rees property and its related properties of modules by applying the results of [6] 

to modules. In section 2, we describe the relations among the Rees property and its related properties. In section 3, we 
show that the existance of the m-full closure and the full closure of a module. In section 4, in terms of restricted weak 
Lefschetz property, we describe the condition under which the second Rees property and the fullness are equivalent, and 
also describe the condition under which the second Rees property and the fullness are equivalent. In section5, We study 
how the Rees property and its related properties behave under taking the inclusion-reversing bijection ( ) ( ):sub M  

( )sub M ∨→ . 

2. Relations among Rees property and its related properties of modules 

In what follows, we assume that M  is a finitely generated graded R -module. We introduce a partial ordere in 
( )sub M  by inclusion-reverse order, i.e., for any ( ), subN N M′∈ , we define N N ′≥  if and only if N N ′⊆ . We fix some 

notations as follows: 
Notation1. For any ( ), subN N M′∈ , 1l R∈  and ( )sub MΩ⊆ : 

(1) ( )#
#: , : , : : , : : : / .l

lN N N lN N N N N l and rN l M n= = = = =m m  
(2) ( ) ( ) ( )# #

# #: , : , : , :l l
l l lr N rN rN N r N rN rN r N rN rN N and r N rN rN t Nµ t= − = = − = − = = − = . 

(3) ( ) ( ){ } ( ) ( ){ }# #
# # #

: max sub , : max subr N r L L L M with L N r N r L L L M with L Nmt = = ∈ ≤ = = ∈ ≤ . 
(4) :N N N N′ ′∧ = + .  
It is easy to check that the following hold (see [6]): 
・ ( )sub M  is a ranked poset with rank function r . 
・ N N ′∧  is the infimum of  and N N ′ . 
Putting ( )sub M=�  and 1RΦ =  in Definition 2 and Definition 3 in [6], the following hold: 
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・ ( ) ( ) ( ) ( )-Full -Full , Full Full , Rees Rees , SRees SReesM M M MFF = = = =m m� � � � . 
・ ( ) ( )w- -Full w- -Full , w-Full w-FullM MFF = =m m  . 

Lemma1. For ( )sub M= , the following hold: 

(1) For any N ∈  and 1l R∈ , ( ) ( )ll l
l ll

N N N N N≤ ≤ ≤ ≤  and #
#

l
lN N N N≤ ≤ ≤ . 

(2) For any N ∈  and 1l R∈ , ( )l
lr N r N L rL= ∧ −  whenever lL N≤ . 

(3) For any N ∈  and { }1 2 1, #l l R∈ ∪ , ( ) ( )1 22 1
l ll l

N N=  and ( ) ( )2 1
1 2

l ll lN N= . 

Proof. (1) and (3) directly follow from the definitions.  
(2) Using the following exact sequence: 

( ):0 0 exactlN l L L L
N N N N lL

×→ → → → →
+

, 

we have ( ): l
l

N l Lr N l l r N L rL
N N lL

   = = = ∧ −   +   
. □ 

From Lemma 1, ( )sub M=�  satisfies Condition 3( and Condition 1) in [6]. Therefore we can apply the results in  
[6] to ( )sub M=� .  
Definition 5. For any finitely generated graded R -module M , we define 

( ) ( ) ( ){ }: max subd M N N Mm m= ∈  (if it exists, otherwise ( ) :d M = ∞ ), 

( ) ( ) ( ){ }: max subd M N N Mτ τ= ∈  (if it exists, otherwise ( ) :d ′ = ∞ ). 

Proposition 1. ( ) ( )d M d Mµ τ= . 
Proof. This follows from Proposition 1 in [6]. 

We put ( ) ( ){ }# #sub : subM N N N M= = ∈m , ( ) ( ){ }##
sub : : subM N N N M= = ∈m . 

Lemma 2. For any ( ), subN N M′∈  and 1l R∈ , the following hold: 
(1)  ( ) ( ) ( ):N N Nµ τ µ≤ =m m m . Especially ( ) ( )N Nµ τ= m if and only if :N N=m m . 

(2)  ( ) ( ) ( )( ): :N N Nτ µ τ≤ =m m m . Especially ( ) ( ):N Nτ µ= m if and only if ( ):N N=m m . 
(3)  ( ) ( )N Nµ τ= m .  
(4)  ( ) ( ):N Nτ µ= m  if ( ):N N=m m . 

(5)  ( ) ( ) ( )lN t N t Nt ≤ ≤ . Especially ( ) ( ) ( )( )lN t N t Nt = = if and only if : :N l N= m . 

(6)  ( ) ( ) ( )lN t N t Nµ ≤ ≤m m . Especially ( ) ( ) ( )( )lN t N t Nµ = =m m if and only if ( ): :N l N N= =m m m . 
(7)  If :N l N ′⊆m , then ( ) ( ):lt N l Nµ ′≥m . Especially ( ) ( ): lN l t Nµ ≤m m . 

(8)  If N N ′⊆ , then ( ) ( ) ( )( )l lt N t N Nt′ ′≥ ≥ . Especially ( ) ( )N t Nt ≤ < ∞ . 
(9)  ( ) ( )N t Nµ ≤ < ∞m . 

(10)  ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }#

#
sub sub : , sub subM N M N N M N M N Nτ µ µ τ= ∈ = = ∈ =m m . 

Proof. (1)-(4) : These follow from Lemma 1 (3)-(6) in [6].  
(5),(6) : These follow from Lemma 3 (1)-(4) in [6]. 
(7)-(9) : These follow from Lemma 6 in [6].  
(10): This follows from (1), (2) and Lemma 1 (1) in [6]. □ 

Remark 1. From Lemma 2(8),(9) (or Remark 5 in [6] ), we have  
 ( ) ( ) ( ) ( )( ) ( ){ }w-Full sub :M N M N N t Nt µ= ∈ = =m� ,  

( ) ( ) ( ) ( )( ) ( ){ }w- -Full subM N M N N t Nµ t= ∈ = =m m m� . 

Lemma 3. ( )w-FullN M∈m �  if and only if ( )w- -FullN M∈ m � . 
Proof. This follows from Remark 1 and Lemma 2 (3) . □ 
Lemma 4. For any ( )subN M∈ � , the following are equivalent: 

a)  ( )w-FullN M∈ � , i.e., ( ) ( )N t Nt = . 
b)  There exists ( )subN M′∈ �  with N N′ ⊇  such that ( ) ( )N t Nt ′ = . 
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c)  There exists ( )subN M′∈ �  with N N′ ⊇  and 1l R∈ such that ( ) ( )lN t Nt ′ ≥ . 
Proof. a)⇒ b) : Take  N N′ ⊇  such that ( ) ( )N Nτ τ ′= , then ( ) ( )N t Nt ′ =  by our assumption. 
  b)⇒ c): Take 1l R∈  such that ( ) ( )lt N t N= , then ( ) ( )lN t Nt ′ ≥  by our assumption. 
  c)⇒ a) : From Lemma 2(8), we have ( ) ( )N t Nt ≤ . On the other hand, ( ) ( ) ( ) ( )lN N t N t Ntt  ′≥ ≥ ≥  holds by our 
assumption. This implies ( ) ( )N t Nt = . □ 

  From Lemma 2(10), putting ( )sub M=�  and 1RΦ =  in Definition 2 and Definition 3 in [6], the following hold: 

( ) ( )SRees SRees , Full FullM MF′ ′ ′= =� � . 
  We put 

( ) ( ) ( ) ( ) ( ) ( ){ }w-Full : sub , :M N M N t N N Ntt  µ′ = ∈ = = m , 

( ) ( ) ( ) ( ) ( ) ( ){ }†w- -Full : sub ,M N M N t N N Nµ µ t= ∈ ≥ =m m m . 
Theorem 1. There are one-to-one correspondences: 

(1) ( ) ( )
:

SRees SReesM M×→ ′←
m

m
, 

(2) ( ) ( )
:

-Full FullM M×→ ′←
m

m
m , 

(3) ( ) ( )†

:
w- -Full w-FullM M×→ ′←

m

m
m . 

Proof. This follows from Theorem 1 and 2 in [6]. □ 
Theorem 2. The following hold: 

(1) ( ) ( )-Full ReesM M⊆m , ( ) ( )Full SReesM M⊆ , ( ) ( )-Full FullM M⊆m . 
(2) If ( )w- -FullN M∈ m , then the following two conditions are equivalent: 

a) ( )ReesN M∈ .   
b) ( )-FullN M∈m . 

(3) If ( )w-FullN M∈ , then the following two conditions are equivalent: 
a) ( )SReesN M∈ .  
b) ( )FullN M∈ . 

(4) ( ) ( )Rees -FullN M M∈ m  if and only if ( )ReesN M∈  and ( ) ( )N t Nµ < m . 
(5) ( ) ( )SRees FullN M M∈   if and only if ( )SReesN M∈  and ( ) ( )N t Nt < . 

Proof. This follows from Theorem 3 and Corollary 1 in [6]. □ 

3. The m-full closure and the full closure of modules 

3.1 Preliminary 
Let W  be a finte dimensional k -vector space with a fixed tuple of base ( )1, , me e e=  . For any k -linear 

endomorphism ( )Hom ,k W Wϕ∈ , we denote its matrix representation w.r.t. e  by ( )Mat ϕ . Let ( )n k  be the affine 

n-space over k  with its coordinate ring 1[ , , ]nk x x . We denote ( ) ( ) ( ) ( ){ }1 1: , , , , 0 for  all  n
n nV J a a k f a a f J= ∈ = ∈   

the Zariski closed set in ( )n k  defined by an ideal 1[ , , ]nJ k x x⊆   and ( ) ( ) ( ): nD J k V J=   the Zariski open set 
defined by an ideal J . For a finite set of k -linear endomorphisms { } ( )1, , Hom ,n k V Vϕ ϕ ⊆  we put: 

( )( ) ( ) ( ) ( )( ){ }rank 1 1 1 1, , ; : , , rank Matn n
i n n n nU k a a k a a iϕ ϕ ϕ ϕ≥ = ∈ + + ≥  ++  , 

( )( ) ( ) ( ) ( )( ){ }rank 1 1 1 1, , ; : , , rank Matn n
i n n n nV k a a k a a iϕ ϕ ϕ ϕ≤ = ∈ + + ≤  ++  . 

Lemma 5. For any non-negative integer i, there exists a homogeneous ideal ( )1, , nJ x x⊆  such that 

( )( ) ( )rank 1, , ; n
i nV k V Jϕ ϕ≤ =  . Especially, ( )( )rank 1, , ; n

i nU kϕ ϕ≥    is a Zariski open set in ( )n k .  
 
Proof. If we put J = ( generated by all i i×  minors of the Matrix ( )1 1Mat n nx xϕ ϕ+ + ), then J  is a homogeneous 

ideal, ( )1, , nJ x x⊆   and ( )( ) ( )rank 1, , ; n
i nV k V Jϕ ϕ≤ =  . □ 
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3.2 Existance of the m-full closure and the full closure 
  Fixing a base { }1, , ny y of 1R , we identify 1R  as ( )n k , by ( ) ( )1 1 1 1, , n

n n nR a y a y a a k+ + ↔ ∈  + . For 

( )subN M∈ , we put ( ) ( ) ( ){ } ( )1 1: n
lD N l R t N t N R k= ∈ = ⊆   . 

Lemma 6. The following hold: 
(1)  ( )D N  is a Zariski open set in ( )1

nR k   for any ( )subN M∈ . 

(2)  If ( )-FullN M∈m , then ( ) { }1 :D N l R N l N= ∈ = ≠∅m m . 

(3)  If ( )FullN M∈ , then ( ) { }1 : :D N l R N l N= ∈ = ≠∅m . 

(4)  If ( ), -FullN L M∈m , then ( )-FullN L M∩ ∈m . 
(5)  If ( ), FullN L M∈ , then ( )FullN L M∩ ∈ . 

Proof. (1) :Put : / /iy
i iy M N M Nϕ ×= × →  the k -linear endomorphism on /M N  defined by taking multiplication 

by ( )1iy i n≤ ≤ . We have  

( ) ( )( ) ( ) ( ) ( ) ( ){ } ( )1 1 1 1 1 1rank , , ; dim kern n
n n n k n n ln t nU k l a y a y R k a a t n t n D Nϕ ϕ ϕ ϕ≥ − = + + ∈ + + = ≤ =    ++  . 

By Lemma 5, ( )D N  is a Zariski open set in ( )1
nR k  . 

(2), (3): These follow from Lemma 2(5), (6). 
(4): From (1) and (2), ( ) ( )D N D L∩ ≠∅m m . So take an element ( ) ( )l D N D L∈ ∩m m . In general, for any ideal I of 

R and any R-modules 1 2,M M , the following hold: 
・ ( ) ( ) ( )1 2 1 2: : :M M I M I M I∩ = ∩ , 
・ ( )1 2 1 2I M M IM IM∩ ⊆ ∩ , 
・If 1 2M M⊆ , then 1 2: :M I M I⊆ . 

Hence we have: 
( )( ) ( ) ( ) ( ): : : :N L N L l N L l N l L l N L∩ ⊆ ∩ ⊆ ∩ = ∩ = ∩m m m m m . 

Therefore ( ) :N L l N L∩ = ∩m . This implies ( )-FullN L M∩ ∈m . 
  (5): From (1) and (3), ( ) ( )D N D L∩ ≠∅ . So take an element ( ) ( )l D N D L∈ ∩m m . We have: 

( ) ( ) ( ) ( ) ( ) ( ): : : : : :N L l N l L l N L N L∩ = ∩ = ∩ = ∩m m m .  
This implies ( )FullN L M∩ ∈ . □ 
Definition 5. Let ( )subN M∈ . 

(1) If there exists an unique minimal element (w.r.t. inclusion order) among those elements L N⊇ with 

( )-FullL M∈m , then we call it the " m -full closure of N " and denote it by  -f
N
m . 

(2) Similarly, if there exists an unique minimal element (w.r.t. inclusion order) among those elements L N⊇ with 

( )FullL M∈ , then we call it the "full closure of N " and denote it by  f
N . 

Theorem 3. For any ( )FullN M∈ , the following hold: 

(1) There exist  -f
N
m the m -full closure of N . 

(2) There exist  f
N the full closure of N . 

Proof. (1) :Since ( )/l M N < ∞  for ( )subN M∈ , ( ) ( ){ }: subN L M L NΩ = ∈ ⊇  satisfies the decending chain condition 
(w.r.t. inclusion order) . We have ( ) ( )-FullM N M∈Ω ∩ ≠∅m , so there exists a minimal element (w.r.t. inclusion order) 
in ( ) ( )-FullN MΩ ∩m . If ,L L′ are minimal elements (w.r.t. inclusion order) in ( ) ( )-FullN MΩ ∩m , then 

( )-FullL L M′∩ ∈m . Hence L L L L′ ′= ∩ = form the minimality of these elements. This implies 

( ) ( ){ }min -Full 1N MΩ ∩ =m , where S  denotes the cardinality of a set S . Therefore  -f
N
m the m -full closure of 

N exists. 
(2):The proof of (2) is quite similar to the proof of (1). So we omit the proof. □ 
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4. Restricted weak Lefschetz property 

4.1 Preliminary 
Let W  be a finte dimensional k -vector space with surejective linear maps: 

2 1
11 0

nf
n n f f

W W W W−=     . 

Lemma 7. ( )1
1

dim d rim ke
i

n

k k i f i
i

W W W −
=

= ⊕  . 

Proof. We prove this by induction on n . If 1n = , the assertion clearly holds. If 1n > , then we have 

( )1

1

1
1

dim d k rim e
i

n

k k i i
i

n f
W W W−

=
−

−

= ⊕   by the induction hypothesis. Therefore we have: 

( ) ( ) ( ) ( )1

1 1 1 1 1
1 1

ker kerdim dim dim dim dim diker kem r
n n i i

n n

k k n n k n k n n k i i k i in f f fi fi
W W W W W W W W W W

−

− − − − −
= =

+= + = =⊕ ⊕    .  □ 

4.2 Restricted weak Lefschetz property implies weak fullness 
Lemma 8. For any ( )subN M∈ � , the following hold: 

(1) If N  has restricted weak Lefschetz property  w.r.t. M , then ( )w-FullN M∈ . 
(2) If Nm  has restricted weak Lefschetz property  w.r.t. M , then ( )w- -FullN M∈ m . 

Proof. (1) :Denote ( )/ /
s

i
i a

M N M N
=

=⊕ with ( ) ( )/ , / 0
a s

M N M N ≠ , then by our assumption, /M N  has unimodal 

Hilbert function. So we have ( ) ( ) ( ) ( ) ( ) ( )/ / / / / /0 1 1 1 0M N M N M N M N M N M Nh a h a h h h s h ss s= − ≤ ≤ ≤ ≥ + ≥ ≥ ≥ + =   for some 
integer c  with a c s≤ ≤ . Hence we have: 

(#) ( ) ( ) ( ) ( ) ( )1 1
0 / / / / / 0

l l l l l la a c s s
M N M N M N M N M N

× × × × × ×− +
= =   + + + , 

where 1l R∈  is a Lefschetz element, l×  denote the linear map defined by multiplication by l , -’s are injective 
maps and 9’s are surjective maps.  

From (#) and Lemma 7, we have: 

(  ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1
/ ker / / ker / / kdim di em r / / ll l lk kc i i c c

i c
M N M N M N l M N M N l M N M N t N

+ ≥ ≥× × ×≥

  = = → ==   
   ⊕   , 

where we denote ( ) ( ):/ /
c i

i c
M N M N

≥
≥

=⊕ . 

Put 
1

i i
i c i c

N N M N
≤ ≥ +

′ = ⊕ ⊇⊕ ⊕ , where iN  (resp. iM ) denotes the the graded componet of N  (resp. M ) for any 

integer i, then we have the following commutative diagram with exact rows: 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 / / / 0 exact ,

0 / / / 0 exact .

i i i

i i i

N N M N M N
l l l

N N M N M N

′ ′→ → → →
↓× ↓× ↓×
′ ′→ → → →

   

Since ( )/ 0
i

N N′ = , for any integer  i c≤  and ( ) ( )/ /
i i

N N M N′ =  for any integer  i c>  in the above diagram, we have: 
(   ) ( ) ( ) ( ) ( )/ / : //

c c c
M N M NM N N N

≥
′ ′ ′ ′= ⊆ m . 

From (  ) and (   ), we get 

( ) ( )( ) ( ) ( ) ( ): // / dimk lc c
N l N N l M N tM N Nt

≥
′ ′ ′ ′= ≥ = =m . 

Therefore, by Lemma 2(8), we have ( ) ( ) ( )( )lN t N t Nt ′ = = . Hence, by Lemma 4, ( )w-FullN M∈ . 
  (2) :This follows from (1) and Lemma 3. □ 
Theorem 4. For any ( )subN M∈ � , the following hold: 

(1) If N  has restricted weak Lefschetz property  w.r.t. M , then the following two conditions are equivalent: 
a) ( )SReesN M∈ .  
b) ( )FullN M∈ . 

(2) If Nm  has restricted weak Lefschetz property  w.r.t. M , then the following two conditions are equivalent: 
a) ( )ReesN M∈ .  
b) ( )-FullN M∈m . 

Proof. (1) : This follows from Theorem 2(3) and Lemma 8(1).  
(2) : This follows from Theorem 2(2) and Lemma 8(2). □ 
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5. Behavior of Rees property and its related properties under the inclusion-reversing bijection 

5.1 Preliminary 
Lemma 9. For any ideal I of R and any R-module M , the following are equivalent: 

a) Mα ∈  and ( ) 0ϕ α =  for all ( )I Mϕ ∨∈ . 
b) 0 :

M
Iα ∈ . 

Proof. a) ⇒ b): For any r I∈ , we have ( ) ( ) ( )0r r Mϕ α ϕ α ϕ∀ ∨= = ∈  by the assumption and the definition of 

R-module structure of M ∨ . This implis 0rα =  for any r I∈ . Hence we have :L Iα ∈ . 

  b)⇒ a): Any ( )I Mϕ ∨∈  can be represented in the form:
1

m

j j
j

rjj
=

=∑ for some jr I∈  and j Lj ∨∈  ( 0 j m≤ ≤ ). 

Therefore ( ) ( ) ( )
1 1

0
m m

j j j j
j j

r rj α j α j α
= =

= = =∑ ∑  for all ( )I Lϕ ∨∈ . □ 

5.2 Behavior of Rees property and its related properties under the inclusion-reversing bijection ( )  

 In this section, we assume that M is a graded R -module of finite length, i.e., ( )l M < ∞ . 
Lemma 10. For any ( )subN M∈ � , the following hold: 

(1) ( )N N=


  under the natural identification ( ) ( )( )id.
M M N

∨∨= ⊇


 . 

(2) ( ) ( ):I N N I= 

 . 

(3) ( ):N I IN= 

 . 

(4) ( )/ /L N L N ∨
 

  if ( )subN L M⊆ ∈ � . 
Proof. (1):It is easy to check, so we omit the proof. 

(2): We have the following commutative diagram with exact rows: 
( ) ( )

( )
( )

( )( ) ( )( ) ( )

0 ker / exact ,

/
0 / / 0 exact ,

/

M N

M N
M N I M N

I M N

π

π e
ι e

∨∨
∨ ∨∨ ∨

∨

→ →
↓ ↓

 
 → → → →
 
 

a

  

where ( )( ): / /M N M Nε
∨∨→  is the evaluation map, defined by ( )( ) ( ):ε α ϕ ϕ α=  for /M Nα ∈ and ( )/M Nϕ ∨∈ . 

Since the map ε  is an isomorphism, we have ( )
( )

( )/
ker

/
M N

I M N
π ι

∨∨

∨

 
 
 
 

  . Furthermore, by Lemma 9, we have: 

( )( ) ( ) ( ) ( ) ( )
/ /

ker / 0 0 for / 0 : / : /
I M N M N

M N I M N M N N I Nα π ι e α ϕ α ϕ α∨

∨∀∈ ⊆ ⇔ = ⇔ = ∈ ⇔ ∈ =α . 

This implies ( )
( )

( )/
ker : /

/
M N

N I N
I M N

π ι
∨∨

∨

 
  =
 
 

  . Taking ( )∨  of the above diagram , we have the following 

commutative diagram with exact rows: 

( ) ( ) ( )
( )

( )

( ) ( ) ( ) ( )

/
0 / / 0 exact ,

/

0 / : / : / 0 exact .

M N
I M N M N

I M N

M N I M N N I N

e ι

∨
∨ ∨

∨

∨ ∨

∨ ∨ ∨

→ → → →

↓ ↓

→ → → →

 L  

Therefore we get ( ) ( ) ( ) ( )/ / : :I N I M N M N I N I∨ ∨= = = 

  in ( )/M N ∨  from the five lemma. 

(3):In (2), replacing M by M ∨  and N  by  N  , we have ( )( ) ( ):IN I N N I= =
 

  . Hence we have  

( ) ( )( ): :IN N I N I= =






  . 

(4): Since we have ( )/L M L ∨=  and ( )/N M N ∨= , (4) follows from the exact sequence:  

( ) ( ) ( )0 / / / 0M L M N L N∨ ∨ ∨→ → → →  (exact).  □ 
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From Lemma 10, ( ) ( ) ( ): sub subM M ∨′= → = � �  (resp. ( ) ( ) ( ) ( )† : sub subM M ∨= = → = �  ) satisfies Condition 

5(resp. Conditon2) in [6]. Therefore we can apply the results in 2.4 and 3.5 in [6] to ( ) ( ) ( ): sub subM M ∨′= → = � � .    
We denote 

( ) ( ): /lu N l N lN=  and ( ) ( ) ( )
1

: minM ll R
u N u N u N

∈
= = . 

  Let #
#, , , ,min  and minl

lq N q N q N q N q N q NΦ
Φ

aaaaaa      be the notations in 3.5 in [6] where ( )subN M ∨′∈ = �  and 1RΦ =  

(resp. q N   and q N 

  be the notations in 2.4 in [6] where ( )subN M ∨∈ =  ) . It is easy to check that the following 
hold by using Lemma 5, Lemma 2 in [6] and Lemma 10: 

・ ( ) ( ) ( )#q N q N N Nτ µ= = =   , ( ) ( ) ( )#q N q N N Nµ τ= = =  

 . 

・ ( ) ( )l
l lq N t N u N= =  , ( ) ( )l l lq N u N t N= =  . 

・ ( ) ( )min  q N u N t NΦ = =  , ( ) ( )min q N t N u NΦ = =  . 

Theorem 5. For any ( )subN M∈ � , the following hold: 
(1) ( )ReesN M∈ �  if and only if ( ) ( )N Nτ τ= . 
(2) ( )SReesN M∈ � if and only if ( ) ( )N Nµ µ= . 
(3) ( )-FullN M∈ m � if and only if ( ):l N N=m  for some 1l R∈ . 
(4) ( )w- -FullN M∈ m � if and only if ( ) ( ):N u Nτ ≥ m . 
(5) ( )FullN M∈ � if and only if N lN=m  for some 1l R∈ . 
(6) ( )w-FullN M∈  if and only if ( ) ( )N u Nµ = . 

Proof. (1), (2): These follow from Proposition 2 in [6].  
(3)-(6): These follow from Proposition 4 in [6]. 

Remark 2. If we replace the ground ring R a Noetherian standard graded commutative algebra over a field k by a 
Noetherian local ring with maximal ideal m  and replace 1RΦ =  by 2m m , the results in this paper are still valid 
except the results in section 4. 
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