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Rees property and its related properties of modules

Satoru Isogawa™

Abstract Properties of ideals of a commutative Noetherian local ring or a Noetherian standerd graded commutative algebra
over a field, called the Rees property, the second Rees property, the m-fullness and the fullness, can naturally be extended to the
properties of modules. We introduce the property of modules called “weak” m-fullness and “weak” fullness. We show that the
Rees property and the m-fullness are equivalent in the class of modules with weak m-fullness, and also that the second Rees
property and the fullness are equivalent in the class of modules with weak fullness.
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1. Introduction
Let R be a Noetherian standard graded commutative algebra over a field k, with its irrelevant maximal ideal m,

ie, R:éRi with R, =k, R=k[R,] and m:éRi. For any finitely generated graded R-module M . We denote

i=0 i=1
the length of M by I(M), the minimal number of generators of M by x(M)(=I(M/mM))and put
sub(M):={N|a graded submodule N = M with I(M /N)<}. For any Nesub(M), we denote the type of Nin M by

rM(N):T(N)(:I(Nh:Am/N)) and the t-value of Nin M (Definition 3.3 in [5]) by tM(N):t(N)(:antI(N)),Where
N’\;IS:NZSIz{XEM‘SXgN}fOI'aSUbSEt S of R and t,(N):I(Nh:AIIN).Furtherwedenote:

faa (N) = p2(N) = max{ (N
7, (N)=z(N)=max{z(N')|N'2N,N"esub(M)}.
(1) Ahomogeneous ideal 1 of Riscalled m-fullif mi:1=1 forsome IeR,,ie., u(l)=t(ml) ([9]).
(2) Ahomogeneous ideal | of Riscalled fullif I:m=1:1 forsome IeR,, ie, z(1)=t(1) ([2]).
(3) A homogeneous ideal I of R has the Rees property if if x(J)<u(1) for all homogeneous ideal Jo1, i.e.
u(N)=p(1) (9D).
(4) A homogeneous ideal | of R has the second Rees property if z(J)<z(1) for all homogeneous ideal J>1,
i.e. r(l)zg(l).

The notion of the second Rees property has been introduced by J. Watanabe in a private conversation with T. Harima in
2008.

These properties of ideals, which have been studied by many authors (e.g., [1]- [4], [7]-[11]), are naturally extend to
the properties of submodules of a given module as follows:

Definition 1. Let M be afinitely generated graded R -module.
(1) m-Full(M):={The set of m-full (graded) submodules of M} ={N esub(M )/z(N
(

NS N,N"esub(M)},

(2) Full(M):={The set of full (graded) submodules of M}={N esub(M)z(N)=t
(3) Rees(M):={The set of Rees (graded) submodules of M} ={N esub(M)u(N)=u(N)}.

(4) SRees(M):={The set of second Rees (graded) submodules of M}:{N esub(M)\r(N):g(N)}.

We have already studied these properties in purely combinatorial way in [6]. There have been intorduced the notions
“weak” m-fullness, “weak” fullness, “restricted” second Rees property and “restricted” fullness in [6]. In the case of modules,
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these notions can be sated as follows:
Definition 2. Let M be a finitely generated graded R -module.

(1) w-m-Full(M):={The set of m-full (graded) submodules of M} ={N esub(M)[(N)=t(mN)}.
(2) w-Full(M ):={The set of full (graded) submodules of M}:{N esub(M)[z(N) =t N)}

(3) Full’(M):={The set of restrictedly full (graded) submodules of M}:{N esub(M)\y(N :m):r(N):t(N)}.

(4) SRees'(M):={The set of restricted second Rees (graded) submodules of M}:{N esub(M )\y(N :m):r(N):g(N)} .

Let ()':=Hom,( ,k) be the k-dual operator. We define a inclusion-reversing operator ( ) :sub(M)—>sub(M")
as follows:
Definition 3. Let M be a finitely generated graded R -module with (M )<« . Forany N esub(M),

N*:=(M/N) esub(M")

where we assume that (M /N) cM” via (M/N) —=—>M": the k -dual of the natural projection 7:M ->M /N .

On the other hand, a homogeneous ideal | <R is said "having the weak Lefschetz property” if there exists IeR,
such that each map xI:(R/1),—(R/1),, defined by multiplication by I, is surjective or injective for any integer i
where (R/1), isthe i-th graded compnent of R/1. This property of ideals have also been studied by many authors,
for example, consult the listed papers in the reference of [4]. If a homogeneous ideal | <R with [(R/1)<o has "the
weak Lefschetz property”, then it is well known that hy, (hg, (i):=dim (R/1),), the Hilbert function of R/I, is
unimodul, i.e., hg, (0)<---<hg, (j)=hg, (j+1)=--- for some integer j>0. We extend this property to modules as
follows:
Definition 4. Let M be a finitely generated graded R -module. For any N esub(M), we call that N has "restricted
weak Lefschetz property w.rt. M " if there exists IeR, such that each map xI:(M/N). —(M/N). , defined by

i i1’
multiplication by 1, is surjective or injective for any integer i where (M /N). is the i-th graded compnentof M /N,

and further if hy,,, (hy,(i):=dim (M /N) ), the Hilbert function of M /N, is unimodal. In this case, | is called a
"Lefschetz elementof N wrt M "

Throughout this paper, we study the Rees property and its related properties of modules by applying the results of [6]
to modules. In section 2, we describe the relations among the Rees property and its related properties. In section 3, we
show that the existance of the m-full closure and the full closure of a module. In section 4, in terms of restricted weak
Lefschetz property, we describe the condition under which the second Rees property and the fullness are equivalent, and
also describe the condition under which the second Rees property and the fullness are equivalent. In section5, We study

how the Rees property and its related properties behave under taking the inclusion-reversing bijection ( ) :sub(M)
—sub(M").

2. Relations among Rees property and its related properties of modules

In what follows, we assume that M is a finitely generated graded R -module. We introduce a partial ordere in
sub(M) by inclusion-reverse order, i.e., for any N,N’esub(M), we define N >N’ ifand only if N < N’. We fix some

notations as follows:
Notationl. Forany N,N’esub(M), leR, and Qcsub(M):

(1) N*=mN,N"=IN,N,:==N:m,N;:=N:land rN:=I(M/n).

(2) r"N=rN"=rN=g(N), r'N:=rN'=rN,r,N:==rN-rN,=7(N),and rN:=rN-rN, =t (N).
N #o_ : . _ ;

(3) r’N ._max{r L =u(L)|Lesub(M) with LgN},rﬁN .—maX{F#L—T(L)‘LeSUb(M)Wlth L< N}# :

(4) NAN:=N+N'.
It is easy to check that the following hold (see [6]):
* sub(M) is aranked poset with rank function r.

* NAN' isthe infimumof NandN'.
Putting P=sub(M) and @ =R, in Definition 2 and Definition 3 in [6], the following hold:
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* m-Full,P=m-Full(M), Full,/P=Full(M ), ReesP= Rees(M ), SReesP=SRees(M ).
* w-m-Full,P = w-m-Full(M ), w-Full,? = w-Full(M) .

Lemmal. For P=sub(M), the following hold:
(1) Forany Ne? and IeR,,N,<(N') <N <(N,)'<N' and N, <N,<N*<N'.
(2) Forany NeP and IeR,,iN=r(NAL)-rL whenever L<N,.
(3) Forany Ne? and I,1I,eR, U{# ,(N,1)|2=(NIZ)I1 and (N'i)'2 :(N'Z)'l.

Proof. (1) and (3) directly follow from the definitions.
(2) Using the following exact sequence:

O%MQL%LA L A)O(exaCt)’
N:I L |
we have rN=I—|=I =r(NaL)-rL. O
N N +IL

From Lemma 1, P=sub(M) satisfies Condition 3( and Condition 1) in [6]. Therefore we can apply the results in
[6]t0 P=sub(M).
Definition 5. For any finitely generated graded R -module M , we define
d,(M):=max{u(N)|N esub(M)} (if it exists, otherwise d(M):=c0),
d,(M)=max{z(N)[N esub(M)} (if it exists, otherwise d'(P):=c).
Proposition 1. d,(M)=d (M).
Proof. This follows from Proposition 1 in [6].
We put sub(M )’ ::{N”‘ =mN ‘N esub(M )} , sub(M), :={N# =N :m‘N esub(M )} )
Lemma 2. Forany N,N’esub(M) and |eR, the following hold:
(1)  u(N)<z(mN)=g(mN:m). Especially x(N)=z(mN)ifandonlyif mN:m=N.

(2) z(N)<u(N:m)=z(m(N:m)).Especially r(N)=x(N:m)ifandonlyif m(N:m)=N.

@) u(N)=c(mN)

@) z(N)=g(N:m) if m(N:m)=N.

(5) z(N)<t(N)<t(N).Especially r(N)=t(N)(=t(N))ifandonlyif N:I=N:m.

(6) u(N)<t(mN)<t (mN).Especially x(N)=t(mN)(=t(mN))ifandonlyif mN:l(=mN:m)=N.

(7) If mN:lIc N’ then t(mN:1)>x(N"). Especially x(mN:I)<t (mN).

(8) If NcN', then t(N)>t(N)(=z(N")).Especially r(N)<t(N)<o.

(9)  u(N)<t(mN)<o.

(10) sub(M)"={Nesub(M)[r(N)=g(N:m)},sub(M), ={N esub(M)|z(N)=z(mN)}.
Proof. (1)-(4) : These follow from Lemma 1 (3)-(6) in [6].

(5),(6) : These follow from Lemma 3 (1)-(4) in [6].

(7)-(9) : These follow from Lemma 6 in [6].

(10): This follows from (1), (2) and Lemma 1 (1) in [6]. [
Remark 1. From Lemma 2(8),(9) (or Remark 5 in [6] ), we have

W-FUll(M ) ={N esub(M )[z(N)(= (N :m)) =t(N)} ,

Lemma3. mNew-Full(M) ifandonlyif New-m-Full(M).

Proof. This follows from Remark 1 and Lemma 2 (3) . [
Lemma 4. For any N esub(M ), the following are equivalent:

a) New-Full(M),i.e, z(N)=t(N).
b) There exists N'esub(M) with N'>N suchthat 7(N")=t(N).
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c) Thereexists N'esub(M) with N'oN and leR suchthat z(N")>t(N).
Proof.a)=b) : Take N'oN suchthat z(N)=z(N’),then z(N')=t(N) by our assumption.
b)=c): Take IeR, suchthat t(N)=t(N),then z(N')>t(N) by our assumption.
c)=a) : From Lemma 2(8), we have z(N)<t(N). On the other hand, z(N)>z(N')>t(N)>t(N) holds by our
assumption. This implies z(N)=t(N). [J
From Lemma 2(10), putting P=sub(M) and @ =R, in Definition 2 and Definition 3 in [6], the following hold:
SRees"P=SRees(M ), Full,P=Full'(M).
We put
w-Full'(M :{N esub(M)[z(N) t(N)=pu(N :m)} ,
w-m-Full" (M )::{N esub(M)[x(N )>t(mN) (N):r(mN)} :
Theorem 1. There are one-to-one correspondences:
(1) SRees(M)c——>SRees'(M),
(2) m-Full(M )e=—=Full' (M),
(3) w-m-Full" (M )#W-Full’(M ).
Proof. This follows from Theorem 1 and 2 in [6]. [
Theorem 2. The following hold:
(1) m-Full(M)cRees(M), Full(M)cSRees(M), m-Full(M)c Full(M).
(2) If N ew-m-Full(M), then the following two conditions are equivalent:
a) NeRees(M).
b) Nem-Full(M).
(3) If N ew-Full(M), then the following two conditions are equivalent:
a) N eSRees(M).
b) NeFull(M).
(4) NeRees(M)~m-Full(M) ifandonlyif NeRees(M) and u(N)<t(mN).
(5) N eSRees(M)~Full(M) ifandonlyif NeSRees(M) and z(N)<t(N).
Proof. This follows from Theorem 3 and Corollary 1 in [6]. []
3. The m-full closure and the full closure of modules

3.1 Preliminary
Let W be a finte dimensional k -vector space with a fixed tuple of base e=(e,--e,). For any k -linear

endomorphism ¢ e Hom, (W,W), we denote its matrix representation w.rt. e by Mat(p). Let A" (k) be the affine
%] We denote V (3):={(a,+a,)e A" (k)| f( =0for all feJ|
the Zariski closed set in A"(k) defined by an ideal Jck[x,---,x,] and D(J) A"(k)~ V(J) the Zarlskl open set
defined by an ideal J . For a finite set of k -linear endomorphisms {¢,,---,¢,} < Hom, (V,V) we put:

U (0007 03 A" (K)) = {(al,---,an)eA”(k)‘ rank (Mat (a,p, +-++2,0,)) > |} ,

Vranksi(q’l"”’q)n;An(k)) = {(ai’“.’an)EAn(k)‘ rank(Mat(a1¢l+"'+an¢n))S I} ’
Lemma 5. For any non-negative integer i, there exists a homogeneous ideal Jc<(x,---x,) such that

n-space over k with its coordinate ring Kk[x,,

Vst (21,023 A" (K)) =V () . Especially, U,,.i(@- 0, A" (K)) is a Zariski open setin A" (k).

Proof. If we put J=( generated by all ixi minors of the Matrix Mat(xe +---+X,¢,)), then J is a homogeneous
ideal, J<(x,+%) and Ve, (on 04" (K))=V (). O

1%
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3.2 Existance of the m-full closure and the full closure

Fixing a base {y,-- vy,} of R,, we identify R, as A"(k), by R,2ay,+--+ay, < (a,.a,)eA" (k). For
N esub(M), we put D(N):={leR[t(N)=t(N)}cR,=A"(k).
Lemma 6. The following hold:

(1) D(N) isaZariskiopensetin R,=A"(k) forany Nesub(M).

(2) If Nem-Full(M),then D(mN)={leRJmN:I=N}=@.

(8) If NeFull(M),then D(N)={leR,|N:I=N:m}=@.

(4) If N,Lem-Full(M), then N Lem-Full(M).

(5) If N,LeFull(M),then N~ LeFull(M).
Proof. (1) :Put ¢ =xy,:M/N—2>M /N the k-linear endomorphism on M /N defined by taking multiplication
by vy, (1<i<n).We have

U enaoy (@0 00 A7 (K)) = {I =ayy; +--+a,y, € R, = A" (k)|dim, ker (a, +-+a,¢,) =t (n) <t(n)} =D(N)..

By Lemma5, D(N) isa Zariskiopensetin R, =A"(k).

(2), (3): These follow from Lemma 2(5), (6).
(4): From (1) and (2), D(mN)nD(mL)=@ . So take an element |eD(mN)~D(mL). In general, for any ideal I of

Rand any R-modules M,, M, , the following hold:
* (MyAM,): =M 1)n (M, 1),
* I(M,AM,)cIM, A IM,,
< If M,cM,,then M :1cM,:1.
Hence we have:
NAaLc(m(NAL):)c(mNAmL):l=(mN:)~(mL:)=NAL.
Therefore m(N~L):I=NAL.Thisimplies N~ Lem-Full(M).
(5): From (1) and (3), D(N)nD(L)=@. So take an element 1< D(mN)~D(mL).We have:
(NAL):I=(N:)n(L:)=(N:m)n(L:m)=(NnL):m.
This implies N~ LeFull(M). [
Definition 5. Let N esub(M).
(1) If there exists an unique minimal element (w.r.t. inclusion order) among those elements LN with
L em-Full(M), then we call it the " m -full closure of N " and denote it by N
(2) Similarly, if there exists an unique minimal element (w.r.t. inclusion order) among those elements L o N with
L eFull(M), then we call it the "full closure of N " and denote it by N
Theorem 3. For any N eFull(M), the following hold:

(1) There exist N™"the m -full closure of N .

(2) There exist N the full closure of N .
Proof. (1) :Since I(M/N)<w for Nesub(M), Q(N):={Lesub(M)[L2oN} satisfies the decending chain condition

(w.rt. inclusion order) . We have M e Q(N)nm-Full(M)= @, so there exists a minimal element (w.r.t. inclusion order)
in Q(N)nm-Full(M) . If L,L" are minimal elements (w.rt. inclusion order) in Q(N)~m-Full(M) , then
LnL'em-Full(M) . Hence L=LnL'=L" form the minimality of these elements. This implies

‘min{Q(N)mm-Full(M)}‘:l, where |S| denotes the cardinality of a set S. Therefore N"" the m-full closure of

N exists.
(2):The proof of (2) is quite similar to the proof of (1). So we omit the proof. []
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4. Restricted weak Lefschetz property

4.1 Preliminary

Let W be a finte dimensional k -vector space with surejective linear maps: W =W, A»W — —»W 0.

Lemma7. dim W =dim, Qn-)ker(wi ?WH) .

i=1
Proof. We prove this by induction on n . If n=1, the assertion clearly holds. If n>1, then we have

n-1
dim, W_, =dim, @ker(WH —f»Wi) by the induction hypothesis. Therefore we have:

i=1

dimkWn:dimkker(Wn7Wn71)+dimkWM:dimkker( —»Wn 1)+d|m 6-)ker(wi —»W) dimkéker(WH—f»Wi). U
g pert i

i=1
4.2  Restricted weak Lefschetz property implies weak fullness
Lemma 8. For any N esub(M), the following hold:

(1) If N has restricted weak Lefschetz property w.rt. M ,then New-Full(M).
(2) If mN has restricted weak Lefschetz property w.r.t. M, then New-m-Full(M).

Proof. (1) :Denote M/N:QS-)(M/N)i with (M/N)_,(M/N) =0, then by our assumption, M /N has unimodal

Hilbert function. So we have 0=h,, (a-1)<h,,(a)<---<hy,(o)=hy,(c+1)=---=hy, (s)=hy,(s+1)=0 for some

integer ¢ with a<c<s. Hence we have:
(#) 0=(M/N),

where 1eR, is a Lefschetz element, xI denote the linear map defined by multlpllcatlon by I, <’s are injective

L (MIN), = (MIN) (M /N),=(M /N)_ =0,

maps and - ’s are surjective maps.
From (#) and Lemma 7, we have:

(1) dim,(M/N), =dimk@ker((M IN), (M /N)M):I(ker((M IN), (M /N)zc)jzl(ker(M INoM /N)j:tl(N),

izc

where we denote (M /N)_=@(M/N),.

ixc

Put N'=@N,® @M, 2N, where N, (resp. M;) denotes the the graded componet of N (resp. M) for any

i<c izc+l

integer i, then we have the following commutative diagram with exact rows:
0 - (N/N), - (M/N) — (M/N’), — 0(exact),
4 xl O Ixl O x|
0 - (N/N), - (M/N) — (M/N’), — 0 (exact).
Since (N'/N), =0, forany integer i<c and (N'/N) =(M/N) foranyinteger i>c inthe above diagram, we have:
(18) (M/N) =(M/N') =(M/N'), <(N":m)/N".
From (§) and (4 ), we get
r(N')=I((N’ ) N)=I(M/N')_=dim (M /N) =t (N).
Therefore, by Lemma 2(8), we have z(N’)=t,(N)(=t(N)). Hence, by Lemma 4, N ew-Full(M).
(2) :This follows from (1) and Lemma 3. D
Theorem 4. For any N esub(M ), the following hold:
(1) If N has restricted weak Lefschetz property w.rt. M, then the following two conditions are equivalent:
a) N eSRees(M).
b) NeFull(M).
(2) If mN has restricted weak Lefschetz property w.r.t. M, then the following two conditions are equivalent:
a) NeRees(M).
b) Nem-Full(Mm).
Proof. (1) : This follows from Theorem 2(3) and Lemma 8(1).
(2) : This follows from Theorem 2(2) and Lemma 8(2). [
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5. Behavior of Rees property and its related properties under the inclusion-reversing bijection

5.1 Preliminary
Lemma 9. For any ideal 1 of Randany R-module M, the following are equivalent:

a) aeM and ¢(az)=0 forall pel(M").
b) an’\;II.
Proof. a)=b): For any rel, we have ro(a)=¢(ra)=0 (VgoeMv) by the assumption and the definition of

R-module structure of MY . Thisimplis ra=0 forany rel .Hence we have ael:l.

b) = a): Any (pel(MV) can be represented in the form: ¢ =Y r,p, forsome r el and ¢;el’ (0<j<m).

=1
Therefore go(a)zil’jgoj(a)zi(pj(rja)zf) forall pel(L). O
j=1 =1

5.2 Behavior of Rees property and its related properties under the inclusion-reversing bijection ( )

In this section, we assume that M is a graded R -module of finite length, i.e., I(M)<o.
Lemma 10. For any N esub(M), the following hold:

(1) (N°) =N under the natural identification M E(M v)V(;(N")“).

(2) 1(N7)=(N:1).
(3) N:I=(IN).
(4) L'/N°=(L/N)" if NcLesub(M).

Proof. (1):1t is easy to check, so we omit the proof.
(2): We have the following commutative diagram with exact rows:

0 > ker(zoe¢) N M /N (exact),
i O le
N [U”””v] S ((MNY) S (I(MINY) > 0 (exat),

I(M/N)’
where £:M /N —>((M /N)V)v is the evaluation map, defined by &(a)(¢)=¢(a) for aeM/Nand pe(M/N)".

(M/N)’

Since the map & is an isomorphism, we have -
I(M/N)

] =ker(z 1) . Furthermore, by Lemma 9, we have:

aeker(ﬂoz)(gM /N)@g(a)‘l(M/N)\, =Oc>(p(a):0f0rv(pel(M /N)VQaEOM:INM IN=N:1/N.

This implies [m} =ker(ror)=N:I1/N . Taking ()" of the above diagram , we have the following

commutative diagram with exact rows:

0 > I(M/N)" > (M/N) f&/ﬁg; — 0(exact),
\ O lle O I

0 > (M/N:l)" > (M/N)" - (N:I/N)" — 0 (exact).
Therefore we get 1(N*)=1(M/N)"=(M/N:1)"=(N:I)" in (M/N)" from the five lemma.
(3):In (2), replacing M by MY and N by N°,we have |N=|((N°)°)=(N°:|)°.Hencewe have
(mf:«wnyyzwn.
(4): Since we have L'=(M /L) and N°=(M/N)", (4) follows from the exact sequence:
0—>(M/L) ->(M/N) —>(L/N) -0 (exact). [
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From Lemma 10, ( ) :P=sub(M)—P'=sub(M") (resp. () =( )':P=sub(M)—>Q=sub(M")) satisfies Condition
5(resp. Conditon2) in [6]. Therefore we can apply the results in 2.4 and 3.5 in [6] to ( )" :P=sub(M)— P'= sub(M v) .
We denote

u (N)=I1(N/IN) and uM(N):u(N):zﬂnu,(N).
Let g*N°, q,N",q'N", g,N°,ming, N and ming”N" be the notations in 3.5 in [6] where N°e7P'=sub(M") and ®=R,
(resp. g’N° and g,N° be the notations in 2.4 in [6] where N- eQ=Sub(MV)) . It is easy to check that the following

hold by using Lemma 5, Lemma 2 in [6] and Lemma 10:
* Q"N (=0’N)=7(N)=g(N"), q,N"(=qN")=p(N)=7(N").
* g'N"=t,(N)=u,(N), gN"=u(N)=t(N°)
- ming,N° =u(N)=t(N") , ming®N"=t(N)=u(N").

Theorem 5. For any N esub(M ), the following hold:

(1) N°eRees(M) ifandonlyif 7(N)=z(N).

(2) N°eSRees(M) ifandonlyif z(N)=u(N).

(3) N’ em-Full(M) ifandonlyif I(N:m)=N forsome leR,.
(4) N°ew-m-Full(M) ifandonlyif 7(N)>u(N:m).

(5) N°eFull(M) ifandonlyif mN=IN forsome leR,.

(6) N ew-Full(M) ifandonlyif zZ(N)=u(N).
Proof. (1), (2): These follow from Proposition 2 in [6].

(3)-(6): These follow from Proposition 4 in [6].
Remark 2. If we replace the ground ring R a Noetherian standard graded commutative algebra over a field k by a

Noetherian local ring with maximal ideal m and replace® =R, by m - m?, the results in this paper are still valid
except the results in section 4.
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