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Rees property and its related properties of ranked partially ordered sets

Satoru Isogawa™

Abstract Properties of ideals of a commutative Noetherian local ring or a Noetherian standerd graded commutative algebra
over a field, called the Rees property, the second Rees property, the m-fullness and the fullness, can naturally be extended to the
properties of ranked partially ordered sets. In this paper we study these properties with purely combinatorial points of view.
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1. Introduction

Properties of ideals of a commutative Noetherian local ring or a Noetherian standerd graded commutative algebra
over a field, called the Rees property, the second Rees property, the fullness and the m-fullness, have been studied by
many authors (e.g., [1]-[9]). Especially the notion of the second Rees property has been introduced by J. Watanabe in a
private conversation with T. Harima in 2008.

In this paper, we naturally extend these properties of ideals to the properties of ranked partially ordered sets. More
precisely, these properties can be denoted by using order preserving maps and the rank function on partially ordered set.
We study these properties with purely combinatorial points of view.

In section 2, we establish a correspondence between elements having the Rees property and those having restricted
second Rees property. Similarly in section 3, a correspondence between elements having the m-fullness and those
having the restricted fullness is given. In section 4, we study the inclusion relations which hold among subsets having
those properties the Rees property, the second Rees property, the fullness and the m-fullness. Moreover, we introduce
weak m-fullness to give a condition where the Rees property and the m-fullness coincide, and also introduce weak
fullness to give a condition where the second Rees property and the fullness coincide.

2. Acorrespondence between the Rees subset and the restricted second Rees subset

2.1 Main setting

Let P=(P,<) be a partially ordered set, Z be the set of integers and Z,, be the set of nonnegative integers. We
denote Map(P, Z) the set of maps from P to Z. First we recall the definition of a rank function on 7. An order
preserving map reMap(P, Z), is called a rank function, if it satisfies the condition that x=y whenever x<y and
r(x)=r(y). In general, a partially ordered set with a rank function is called a ranked poset. From now on, we assume

that P is a ranked poset with a rank function r and assume that ( ),( ),:P—>7P are two order preserving

maps satisfying the following conditions:
Condition 1. Forany ae?P,

a, S(a#)# <a<(a,) <a.

Remark 1. The above conditions make (( ) ( )#) an adjoint pair when we think of 7 and ( ),( ),:P—>P asa

category and functors. Moreover in this case, we have

((a#)#)# =¢* and ((a#)#)# =a,.
2.2 Preliminary lemma
Definition 1. We define two functions r*,r, e Map(P, Z) as follows:
rfa=ra’-ra and ra=ra-ra,
where r is the rank functionon P.
Forany feMap(P,Z) ,we denote
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f(a)=max{f(x)xzea} (ifitexists, otherwise f(a):=x),
f(a)=max{f(x)|x<a} (ifitexists, otherwise f(a)=c).

We put P*:= {a“\a € 73} and  B={alacP}.

Lemma 1. Let «,8 be elementsof 7. The following hold:

(1) (a,)' =a ifandonlyif aeP*, (a') =« ifandonlyif aep,.

(2) If a<p, then ra<pp, ra<r'p.

() rfa<ra’=r*(a") . Especially r'a=rco’ifandonlyif (af) -=a.

(4 ra<r'e,=r(e,)" . Especially ra=r'a,ifandonlyif (o) =a.

(5) rla= Ea# .

(6) ra=r'a, if (a,) =a.

(1) If ra=r'a,then ro'=re"and (a#)# =a.

@) If ra=ra and acP’ then r'o,=r‘a,and (a,)' =a.

(9) ra=ra and aeP’ ifandonlyif ra :rﬁ(a#)# .

Proof. (1) :By Remark 1, it is easy to check. (2) :This directly follows from the definitions.

(3): Since (a*), <a, we have

ra’-r'a :(ra# —r(a#)#)—(ra# —ra): ra—r(a#)# >0.
Equality holds if and only if (o) =a .

(4) :We can prove simiarly as (3).

(5): If rfa=w, then for anynez,, there exists «,<a suchthat n<rq, . Since «,"<a’and n<r’e, <ra’ by
(3), we have ra”=co.On the contrary, if ra"=w,then foranynez,, there exists g, <a”suchthat n<r,z, . Since
(B,).<(e"),<a and n<rp <r’(B,), by (4), we have r‘a=co. Therefore we assume r'a, ra’<wo. If rfa=r"pg
for some p<a, then p'<ae” and rfe=r'p<rp’<ra” by (3) and (2). Similarly, if ra"=ry for some y<a”,
then 7, <(a”) <aand ra’=ry<r,<ra by (4)and (2).

(6) :From (5), replacing « by a,, we have rfa, =E(a#)# =ra.

(7): We have rfa<ra®=r*(a*) <r'a=r'a, therefore r'a=ra’ and (o) =a by (3). Moreover from (6) and (3),
we get ria# = ﬂ(a#)# =rfa=r*a=ra".

(8): We remark (a#)” =a by (1) and ra=r‘a, by (4). From (5) and (4), we have
ﬂb#:E@kY:&a:Qa:ﬁaw

(9): First we assume ra=r,(a,)", then r'e, <r,(a,) <r(a,)" =ra<r‘e,. This implies ra=r'a,. From (4), we
have (a#)“ =a. Therefore ra=r,(a, )# =ra and aeP’ by (1). Hence *“if” part follows. Since aeP”* implies

(a#)# =a by (1), the converse implication follows. []
We denote

o
—~
o
~
Il

=max{r'alae P} (if it exists, otherwise d(P)=wx),

[=X

—~

ﬁ

~
]

=max{ralaeP} (ifitexists, otherwise d'(P)=c)

Proposition 1. d(P)=d'(P).

Proof. If d(P)=w, then there exists «,eP wiht n<r’q, foreach neZz,.BylLemmal(3), r'a, <re,.Hence we
have d'(P)=cc. Similarly, d(P)=c if d'(P)=c. Therefore we assume that d(P),d'(P)<e. If d(P)=r"a for
some aeP,then d(P)=r‘a<ra”<d'(P) again by Lemma 1(3). Conversely, if d'(P)=r,8 for some BeP, then
d'(P)=rB<r'g,<d(P) byLemmal(4). Hence d(P)=d'(P). LI
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2.3 The Rees subset, the restricted second Rees subset and their correspondence
Forany maps f,ge Map(P, Zu{oo}) , we denote the equalizer of these maps by

qup(f,g)=EqI(f,g):={aeP\f(a)=g(a)} .
Definition 2. We define three subsets ReesP, SReesP and SRees’P of P as follows:
ReesP:=Eql(r", r’), SReesP:= qu(r#, L#) and SReesP:=SReesP N P*,
and we call them "Rees subset", "second Rees subset" and "restricted second Rees subset™" of P respectively.
Remark 2. From Lemma 1(9), we have SRees'P= qu(r#, ro(( )#)#) .

We can establish a one-to-one correspondence between Rees? and SRees'P . We state this bellow as a theorem.
Theorem 1. There is an one- to-one correspondence:

ReesP<_E—>;_SRees'P .

Proof. This follows immediately from Lemma 1(7),(8). [l
2.4 Behavior of these properties under an order reversing bijection
At the end of this section, we describe how these properties behave under an order reversing bijection with some

conditions. Let Q be a poset with order preserving maps (), ( ) :Q—Q, which satisfy /3bs(/3b)bsﬂg(ﬂb)b <p

forany peQ.Let ( )T :P—Q be an order reversing bijection which satisfies the following conditions:

Condition 2. Forany acP,
t

(oﬁ)yz(oz,,)T and (a*)b=<a#) .
If we put ga':=-ra, then Q becomes a ranked poset with the rank function q. We denote o’ s:=qp’ —qp and

g,8=qp8-q,8 forall peQ.
Under these conditions, we have the following lemma and proposition.
Lemma 2. The following hold for any ae?P:

1) ga'=ra, ga'=ra
) qa —ra, %oﬁ =ra.
Proof. (1): From the definitions we have
Qo= q(oﬁ)b —qa'=q(a,) +ra=ra-ra,=ra, gqao'=qa’ —q(oﬁ)b =—ra —q(oz’“’)T =ra’-ra=ra.
(2): From the definitions we have
ga' = max{q”ﬂ =ra|(a) = p< aT} =max{ra'|a’' > a}

"> }:Fa. |

ro .

ga'= max{qbﬁ =r'a’ (oz’)T =p< aT} = max{r#a’
Proposition 2. For any « <P, the following hold:
(1) a'eReesQ ifandonlyif ra=ra.

(2) o'<SReesQ ifandonly if ria=rfa.
Proof. (1): Since ¢’a’=rz and ¢’a’'=ra, o' eReesQ=Edly(q’,q") ifandonlyif ra=ra.

(2): Similarly, since g’ =r‘a and ga'=r'a, o'<SReesQ=Eqly(q, q,) ifandonlyif r'a=r'a. O]

3. Acorrespondence between the m-full subset and the restrictedly full subset

3.1 Main setting
In this section, we need more additional assumptions on 7. We assume that there is an infimum «a A g e P of each

pair of two elements «,BecP . This means that anpf<a,f and y<anp whenever y<a,p . We introduce a
family of order preserving maps ( )',( ),:?—P (Ie®) indexed by aset @, which satisfies the following conditions:
Condition 3.

(1) Forany acP and le®,q<(c') <a<(e) <d' and g <a,<a’<a'.

(2)Forany aeP and led,ra=r(anrp')-rp whenever pB<q,wherewe denotera =ra-ra
(8)Forany aeP and I,l,edu{#,(q ) =(a,), and (a'l)Qz(a'Q)ﬂ
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For the sake of Condition 3(3), we denote
@, = (a'1)|2 =(a,2 )Il and o' = (a'1 )l2 =(a'2 )Il for aeP and I,l,e®U{#} .
3.2 Preliminary lemma
For any o e P, we denote:
minr,a :=min{ra|le®} and minr’e = min{r'a‘l E d)} .
Lemma 3. The following hold forany aePand I, 1,1,e®uU{#}:
(1) ra=ra . Eespecially minra>ra.
(2) ra=ra ifandonlyif ¢ =q,.
(3) ra*>r’a, Especially minr,a*>rfa.

(4) ra*=r'a ifandonly if (a‘*)I =a . Especially in this case, we have (o) =(a*), =a.

®) (a*),

(6) If ra*=r*a,then (a#)# =a and ra’=ra’.

Ll

<q, (a'l'z)l <a®, a" S(a,l) and a, S(ahlz )Il.
1

(M If aeP* and ra=ra,then r,(a#)# =r'a,.
(8) minr,a” <r’a ifandonlyif minr,a”<ra".
Proof. (1): Since «,>¢,, We have ra-ra=(ra—ra)-(ra—ra,)=ra,—reg, >0.

(2): ra=ra isequivalenttorg =ra,. So the condition o, <«, implies o, =«, and vice versa.

(3): We note (&) <(a*), <a.Hence we have r,a“—r*a:(ra#—r(a#)l)—(ra“—ra): ra—r(a’) 0.

(4): ra’=r'a isequivalenttor(a*) =ra . So the condition (oz“)I <(a’),<a implies (a") =a and vice versa.

(5): Since (o:'l)I <a we have (a'l)“ <a, . From Condition 3(3), we have (alﬂz)l =((a'2)'1) <a" . The other
! hlz h L

inequalities can be easily verified by similar way.
(6): We note that « =(*), by (4). Therefore ra* =r‘a=r*(a*) = r#((a#)#)# =ra’.

(7): By Lemma 1(1),3) , aeP* implies (o) =e and ra= r#(a#)” = r#((a#)#) =r’a, . Therefore, from our
#
assumption, we have r(e,) =ra=ra=r'a,.
(8) :This follows form r’a =re” by Lemma 1(5). [
3.3 The m-full subset, the restrictedly full subset and their correspondence
Definition 3. We define five subsets m-Full,P , w-m-Full, P, Full,? , w-Full P, Full,? as follows:
m-Full, P:= {a e P‘rla*‘ =r'a (i.e. (") = a) for some | @} = {a e Plminr,a’ =r'a } ,
w-m-Full, P:= {a € P‘rla“ <rfa for somele d)} = {a € P‘min r,a’ < rja} ,
FuIICDP::{a ePlna=ra (ie a,=a) for somel e@} ={aeP[minra=ra},
w-Full ;P = {a € P‘r,a <ra for somele CD} :{a € P‘min La<ra } )

Full, P:= Full,? " P*,

and we call each of them "m-full subset", "weakly m-full subset”, "full subset","weakly full subset" and "restrictedly full
subset” of Pw.rt. ®.
Remark 3. We remark m-Full, P c w-m-Full,? and Full,P < w-Full,P .

Lemma 4. oew-m-Full,? ifandonlyif o*ew-Full,P.
Proof. If aew-m-Full,P, then ra"<r’a for some led®. Lemma 1(5) r'a=ra” implies o"ew-Full,P .
Conversely if o' ew-Full,P, then ra’<ra”® for some led . Again by Lemma 1(5) r'a=ra", we have
aew-m-Full,P. U]

We can establish a one-to-one correspondence between m-Full,? and Full,, P . We state this bellow as a theorem.
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Theorem 2. There are one-to-one correspondences:

) m-FuIImP# Full, P,

(2) w-m-Full, P ~ ai<:>TW-Fu||¢P AP*.
Proof. (1): follows immediately from Lemma 1(7),(8).
(2): If aewm-Full,PNR, then o ew-Full,P~P* by Lemma 4 and (a") =« by Lemma 1(1). Conversely if
aew-Full,P~P*, then (a,)"'=a byLemmal(l)and «,ew-m-Full,PA%, by Lmma4d. [J

3.4 The m-full closure and the full closure
For aeP, if there exists an unique maximal element among those elements B<a with gem-Full,P, we call it

"m-full closure of «" and denote it by a" Similarly, if there exists an unique maximal element among those

elements pg<awith BeFull,P, we call it "full closure of « " and denote it by a' . For any subset Qc P, if there
exists an unique minimal element among those elements g<? suchthat g>w forany weQ, we call it supremum
of Q anddenoteitby supQ.
Condition 4. For any subset Q< P, the supremum supQ exists and the following condition are satisfied:

supQ, =(supQ), ,
where Ie®u{#} and Q, denotesthe imageof Q by ().

Moreover we assume that the sets [ {I € d)‘(a#)l = a} and [ {le®|a=aq,}are both non-empty.

aem-Full, P acFully, P
Remark 4. By the definition of supremum, it is always true that supQ* < (supQ)# .
Proposition 3. If Condition 4 holds, then, for any o &P, we have
1) ™ =sup{ feP|B<a and B em-Full, P},

@) o =sup{ BeP|B<a and BeFull,P}.
Proof. (1): We put y =sup{ #eP|B<a and Bem-Full,P}. Taking an element me | Iefb‘(a#)lza} , We have

aem-Fully P

(y#)m :sup{(ﬁ”)mep\ﬂstx and ﬁem-Fulle}:sup{ﬂeP\ﬂSa and gem-Full,P}=y.

Therefore y e m-Full,P. Hence a" =y.
(2): Similarly, we put §=sup{ 8eP|B<a and peFull,P} . Taking anelement ne [\ {le®|g=a,|, we have

acFull, P

5,=sup{ B,eP|B<a and geFull,P}=sup{ B, eP|f<a and BeFull,P}=5,.

Therefore 5<Full,. Hence &' =5. [J

3.5 Behavior of these properties under an order reversing bijection
At the end of this section, we describe how these properties behave under an order reversing bijection. Let P* be a

poset having two families of order preserving maps, ( ),,( ) :P* —P* (e ®u{#})indexed by the same set ®u {#}

as it in the case of P, which satisfy Condition 3 with replacing P by P*.Let ( ):P—P" be an order reversing

bijection which satisfies the following conditions.
Condition 5. Forany aeP and ledu{#},

I . . o
(a") =(ey) and ((x )| :(a') .
As the manner in 2.4, if we put ga’=-ra, then P becomes a ranked poset with the rank function q.We denote

q'8=08'-9B, qB=qB-qp and ming,B:=min{qp|led} forall peP".
Under these conditions, we have the following lemma and proposition.
Lemma 5. The following hold forany aeP and ledu{#} :

1) da=ra, ga =r'a.

2 g'a°:ﬁa, %x":ﬁa.
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(3) ming,a’ =minr®a.
Proof. Proofs of (1) and (2) are quite similar to those of Lemma 2. So we omit. (3) follows form (1). [
Proposition 4. For any « <P, the following hold:

(1) a em-Full,P" ifandonlyif (&,) =« forsome led.
(2) a ew-m-Full,?* ifandonlyif ra>minr®a,.

(3) a’eFull,P* ifandonly if o*=a' forsome le®.
(4) o ew-Full,P* ifandonly if ria>minr®.

Proof. (1):Since ((a)#) ~((@)') . @ em-Ful,P* ifandonlyif («,) =a forsome Ico.
|

(2): Since g‘a’=ra and minqm(of)#:minq(b(ol#f:minr"’az,gF by Lemma 5(2) and (3), a°ew-m-Full,P* if and
only if ra>minr®a,.

(3):Since (a°),=(a") and (o) =(a'), a Full,P* ifandonlyif o'=a' forsome le®.

(4):Since %of:?a by Lemma 5(2) and ming,e® =minr®a, a°ew-Full, P ifand only if rfa>minr®e. O

4. Relations among Rees property and its related properties

4.1  Preliminary lemma
We assume that the partially ordered set P satisfies Condition 3 in 3.1.

Lemma 6. The following hold:
(V) If (a*)2p in P forsome led,then ra’>r"p. Especially ra’>rf(a’).
(@ If ,2a, in Pand le®, then ra, >ra,. Moreover if ra, =rea,, then 0.’1/\((az)l)l =a,. Especiallyr,: P > 2
is an order preserving map forany le®.
(3) minra>ra forany aeP.
(4) minrya®>rfa forany acP.

Proof. (1): Since we have a>(a*) >(a*) 24 and o">p", we get o Ap' >a* B =p". Hence it follows that
na'=r(a"Ap)-rpzrp —rp=r'p.
(2) :Put B=(a,) and notice o, A B'>a, A pB'. From Condition 3(2), we have
ey —tia, =(r(ayn ) =1 B)~(r (e, A B')-1B) =1 (e A B') =1 (2, A f)20.
Since p'=((a,), )' >a,, Wehave a,np' =a,. If fa,=ta,,thisimpliesa, A B =a, A((a,), )' oA f =a,.
(3):Forany a=p andany le®,wehave ra>r3>rp by (2)and Lemma 3(1). Therefore minr,a>r.a .
(4):From (3) and Lemma 1(5), we have minr,e”>ra” =r'a. [J -
Remark 5. From Lemma 6(3), minr,a>ra always holds, so we have
w-Full, P = {a € P‘min oo = } .
Also, from Lemma 6(4), minr,e”>r’a always holds, so we have.
w-m-Full ,P = {a € P‘min r,a’=r‘a } .

4.2 Relations among Rees property and its related properties
We investigate the inclusion relations holding among four subsets Rees?, SReesP, m-Full,? and Full,P.

Theorem 3. The following hold:
(1) m-Full,P < ReesP .

(2) Full,P c SReesP.
(3) m-Full,P cFull,P.
(4) If aew-m-Full, P, then the following two conditions are equivalent:

a) aecReesP.
b) aem-Full,P.
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(5) If aew-Full, P, then the following two conditions are equivalent:
a) o <SReesP.
b) aeFull,P.

Proof. (1): If «em-Full, P, then we note that (oz’“‘)I =aand rfa=ra” holds for some |e®. Using Lemma 6(1), we
have ria=ra*>r'p forany p with a=(a’) >p.Hence we get a<ReesP.

(2):If aeFull,P, then using Lemma 6(2) and Lemma 3(1), we have ra=ra>rB>r3 forany g with a>p.
Hence we get o e SReesP .

@):If aem-Full,P, then a=(a") =(a") from Lemma 3(4). Therefore we have ¢, :(((x#)#)lz((a#)l)#:a# by
Condition 3(3). Hence we get « < Full,P.

(4): Since m-Full,? = ReesP by (1), it is enough to show that « em-Full,? if «ew-m-Full,? ~ReesP . Now we
assume that o e w-m-Full,? nReesP , then we note that r‘ac =r"a>minr,e" hold from the definitions. Using Lemma
3(3), we have r*a=rfa>minr,a”>r'a . Therefore minr,a* =rfa . This implies « em-Full, P .

(5): Since Full,? cSReesP by (2), it is enough to show that aeFull,? if «ew-Full,”? SReesP . Now we
assume that «ew-Full,? "SReesP , then we note that r.a=r,a>minr,e hold from the definitions. Using Lemma
3(1), we have r.a=ra>minr,a>ra . Therefore minr,a =r.a . This implies a eFull,P. [

Corollaryl. The following hold:
(1) aeReesP~m-Full,? ifandonlyif aeReesP and rfa<minr,a”.
(2) aeSReesP~Full,P ifandonly if «eSReesP and ra<minra.

5. Summary

We state the relations among Rees property and its related properties bellow as a diagram. In the daiagram bellow, a
solid arrov A—» B means that A implies B and a dotted arrow A <==-» B means that there is a one-to-one
correspondence between A and B. We denote:

w-m-Full, P:= w-m-Full ,P "B, w-Full,, P:= w-Full ,P ~P*.

SReesP w-Full, P w-m-Full , P
F N F N F N y '
' Full,P = w-Full’, P -m-Full, P
ReesP  lguus==ssp| SReesP o @ ¢===aap| W-m-Full;
SReesP nw-Full , P
F N F' F N F N
A} 'y

Full, P = w-Full}, ? " SRees"P

PRESN

m-Full, P = w-m-Full, P  ReesP (= w-m-Full, PrReesP)
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