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On g-Laplace transformation

Nobuo Kobachi™

Abstract In this paper, we treat a q-Laplace transformation in f(x) :Z(a'”) x". In the first half, we state that the
n=0112),

similar transformation, the shift transformation, the transformation in differantial and integral are satisfied. Especialy,
in section 3, we treat a g-analogue of S -function and a g-Laplace transform in convolution (f *g)(x). In second,
we solve some linear ordinary differential equations of second order with constant coefficients by using an inverse

g-Laplace transformation and obtain a g-Laplace transformation in product of an error function and an exponential
function.
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1. NOTATIONS

Let g be a fixed number with 0< g <1

First, weput (a3 ¢), =[[(1-¢""a) for neN, (a; q),=1 and (a; q), =[](1-¢""a).
k=1

k=1

n o0 1 n
Second, for neN, we put n,=» ¢""'and o =) g"" =1 Futhermore, we put (n!), =[]k, (where
k=1 k=1 —-q k=1

n

n (n!)q n - k-1 Sn(n=1) _n n k-1
(on, =1), @=m (k=0,1, -, n), ' =[](¢"'0)=¢"""x" and (x+[y])" =[](x+4""y).

k=1 k=1

n

i i 1_ ’ ’ —n o a n
And these notations are rewritten n, = d , (nY), = @ q), = @ 49). (-9, -1 (nj = uq g
q

1-¢ I-9)" @"":q. k), (a3 ),
- /x5 ),
and (x+[y])" =x"(=p/x ; @), =x"——"—"— (x#0).
4"v/x 5 .,
. . . . . 1-¢°
Then we generalize the above notations by replacing neN with aeR . That is, we put «, = . 9 ,
-9

17 “ :uq“k and (x+[y])* =x* (—y/x—,q)w In (1), for a >0, we find that the q-analouge of
k), (q; a) (—q“y/x 5 q).,

" -function is defined by I' (a)= %(l—q)“’. In fact, by easy calculations, we obtain I' (1)=1 and
q 5 9
I (a+D)=a[T (a).

Next, we state two g-analogues of exeponential function e*. In (1), we find e, (x) :ﬁ (| x[<o,)
—q)Xx; 4q),
and E (x)=(=(1-¢)x; q), (|x[<o). We know that these are rewritten e, (x)zz * and Eq(x)zz([x'])
n=0 n: q n=0 n: q
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by the g-binominal theorem.

(See (1).)

Theorem (q-biominal theorem).

(1 ) Z q)n nz(ax;q)oo (|x|<1)’

n=0 (q q)n (x 5 Q)x
i3 1
1.2 = 1),
(12) ;(q q) (x5 9, (hxi<b)
n 2n(n 1)
(1.3) Z—( 2 =5 0

0

We remark that (x+[y])* = Z(aj x*"[y]" is satisfied with x# 0 and

n=0 q

On g-Laplace tansformation (kobachi)

Y
X

%

<q

Finally, we state the g-differential and the Jackson’s integral. In (1), the g-differential operator A = is defined by

@)~ £ (@)
A ST J\GX)
S =L
B, = LTI ang [0 =304 16,

2. DEFINITION

, and Jackson’s integral is defined by J.OX S d :Z(l—q)q”x f(¢g"x). Futermore we put

n=0

Let f(x) be a function for x > 0. We define a g-Laplace transformation in f(x) as

X
LL@I= ] E, () f(;j dx.

Example 1. For x” (a>-1), we have

© (a+)n

L@+

Lq[xa]zéj':“ Eq (_qx)(fj dqx (q q)a+1 Z g

(@ q),

n+1

x" . If lim

n—oo | g

We put f(x)= i(a

n=0

convergent in [0, o, ]. Then we have a following theorem.

Theorem 2. Suppose that a sequence {a,} is satisfied with lim|— D

n—ow

Then, a g-Laplace tarnsformation of f(x) = Z ( a'
n=0 n

Proof. From Example 1, we have
i L,n+) & a

LU@I=Y -2 []=

n=0 ( ') n=0 (n')q Sn+1 n=0 S

x" (0<x<oo, [r)isgivenby L [f(x)]= z £
s

n
Z n+l °

a+l

N

=r (<), f(x) isconvergentin [0, x, /r) . That is, if s>r, f(fj is
s

= (< 0).

0

a,

n=0
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Example 2. For a g-exponential function e, (4x) = Z )
n=0 F1: q

x" (0<x<oo, /| A]), we have

0 n

L [e,(Ax)]= an =7 (s>14D.

n=0

3. PROPERTIES

0

=r(<o0). We put f(x)= Z :')

n+1

a

n

In this section, a sequence {a,} is satisfied with lim|——

n—»o0

x" (0<x<oo, /1)

0

a,
and F;i(s) = Z sn+1

n=0

When there is a number N such that a, =0 for n> N, we put r=0and oo, /r

is equal to infinity.
Then, we show the similar tansformation, the shift transformation, the transform in differantion and integration.

Proposition 1. (similar transformation)

(3.1) Lq[f(/lx)]z%Fq(%] (0<x<o, /| A]r, s> A|r).

0

Proof. From f(Ax)= Z

nOn)q

= s
i 5-41(3)

Proposition 2.(shift transformation)

x" , we have

We put R =max{r, | 4]}. Then the equation

(32) L,le,(Ax)f(x)]=F,(s—[A]) (0<x<oo, /R, s>R)

is satisfied, where we put F, (s —[1]) = Za—" .

n=0 (S [/’i])"*l
wﬂ’nnwakk_wxnnnn—k
Proof. From e (Ax)f(x)= {no ), X sz(; “, X } = nzz(; ), ko(kl A"a,

we have

[e, (Ax) f(x)]= i nl+1zn:(n_kj l”’kak

=0 S k=l
) © n
) K
k=08 w=0\ 7 §

Il
b
&
M8

("“;q)( j
q; 9,
2

k=0 S H(A/S 5 D

0

a;

T & (s-[AD"
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= F,(s—[4).

Proposition 3.(transformation in differantion)
(3.3) LA, f(0)]=5F,(s)=f(0) (0<x<oo [r,s>r),

3.4) L [xf(x)]———A F,(s) (0<x<oo, [r,s>71).

Proof. (3.3) From A, f(x)ziﬁx ey

LIS, f(@)=3 :1:—{ism R

=0 n=0

0
n—1 an+l

—Lx", we have

0

On qg-Laplace tansformation (kobachi)

Z G x", where we put @, as an arbitrary constant by 0, =0, we have
n=0 =0 ' q
- q n -1 - (n + l)q an
Lq [xf(x)] Z G _Z §2 :

n=0 n=0
On the other hand, we have
F (s)- F(q S) i(nﬂ)a
(1 q gt n+2
Thus, (3.4) is obtained.

B,F,(5)=

Proposition 4.(transform in integration)

(3.5) L, U:f(t) dqt} =§Fq(s) (0<x<oo, [r,s>7),

3.60)If f(0)=0, Lq[lf(x)}quWFq(t) dj (OSx<ooq/r,s>r).
x s

0

proof. (3.5) From J:f(f) i{ 1),} Z (‘;n'*)l

x > a,_ 1 & a,
Lq I:IO /(@) dqt:|: Sn+1l _; OS"” :_F (s).

n=0

(3.6) From f(0)=0,wehave g, =0.Thus we obtain 1 f(x)= Z
X

o i(n +1)'}

Therefore, we have L [ (x)} Z o Z ann.

n=0 ( +1) n=l1 nqs

On the other hand, we have

T

. = l1-g<<
L F(t)dt=-Y (1-q")q"sF,(qg""s) = q"ZZq =
n=0 n=0 k=1

=

Thus, (3.6) is obtained.
4. CONVOLUTION

In this section, we treat a g-Laplace transformation in convolution.
First, we state a scaling of Jackson’s integral.

x" ,where a =0, we have
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x 1
Lenmma 1. ‘[O f(@) dj= xjo S(xt) dt
Proof. We have

[0 di=30-q)g"x £l =x] £ty dyt

n=0

Next, we state [ -function and definition of convolution. In (1), a g-analogue of f -function is defined by

B =[G (. p0)

L, (@I, (5)

Indeed, by esay calculations, we can obtain g, («, /) =—————— . And a g-analogue of / -function is rewritten

[ (a+p)
B,(a,B)= th"’l (1-[gt])’" d,t by using our notations.
Then, we define a g-analogue of convolution of f(x) and g(x) as
(f*2)@) = [ fOgCc=[gtD) d,t .

So, this definition is an extension in a g-analogue of / -function.

Suppose that sequences {a,}, {b,} are satistied with fim [ 42t L=r, lim g“ . We put f(x)= Z ,
n—>0 a n—0 n =0
= b, < a = b .
g(x)=2ﬁx . F(s)=) = and G, (s)= =% . Then, equations L [f(x)]=F,(s) (0<x<oo,/r,s>n),
n=0 11+ q n=0 n=0 S

L[g(x)]=G,(s) (0<x< ooq/r2 , §>r,) are satisfied. Futhermore we put g(a—[gx])= Z i b')
n=0 n

remark that g(a—[gx]) is convergent in x>0, if 0<a@ <o, /r,. Then we put r=max{r, r,}, we have the

(a—[gx])" .

follwing Lemma for 0<x <o, /7.

0 0

Lemma 2. (f*g)(x = Z {(n +k +1)'} xn+k+l

Proof. We have
(f*2)x) =] f(Og0~lqt) d,t

< ab,
"2,

WJ. t"(x [qt]) dt

— i Zw:anJrkﬂ Jol tn (1 _ [qt])k dqt
=0

n=0 k (n') (k')
& ab, L DA DD (4D
"ZZ( , k), I, (n+k+2)
o a b n+k+1
B Mrrevsrirh

Finally, we state a gq-Laprace transformation in convolution.
Proposition 5.(q-Laplace transformatiopn in convolution)
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L[(f*g)x)]=F,(s) G, (s) (0Sx<ooq/r, s>7)

Proof. From lemma 2, we have

0

LI *)@)=3Y

k=0 1=0

k=0 1=0

5. DIFFERENTIAL EQUATIONS

0

. : a .
For a sequence {a,}, a function f (x):z “_x" corresponds to a function Fq(s)zz
=0

n!),

On g-Laplace tansformation (kobachi)

a, b < a z b
e =(Zﬁj{2 7 j = F,(s) G, (s).

0
an

. So we put

n+l
n=0

,1 . . . .
L, [F,(s)]= f(x). Thisis an inverse correspondence of g-Laplace transformation.

opn) |8/ @A f () apf(x)=0
F(O)=4, A, f(0)=B

We remark that both L, and L;l are cleary satisfied linearly. And, by easy caluculations, we can obtain

LA, f(x)]=5*F,(x)+sf(0)-A, f(0).
Then, from (DE1), we have
As—a-p)+B

B-pA B-ad

F (s)= = + .
! (s—a)s=p) (s—a)a=-p) (B-a)s-p)
Thus,
_B-p4 B-a4
0= e @+ e, ()

is a solution of (DE1).

(DE2) A f()=2,a A, f(x)+qa” f(x)=0
f0)=4, A f(0)=8
From (DE2), we have
F(s) = A(s—a—qa)+B _ A
! (s—a)(s —qa)

On the other hand, we have

—lﬂ ( 1 j _ 1 .
g ‘\s—a) (s-[a])
Thus, from (3.4),
f(x)=Ade, (ax)+(B—-ad)xe,(ax)

B—-aA
+ .
s—a (s—[a])’

is a solution of (DE2).

ors) |8/ @+ 1) =0
f0)=4, A, f(0)=B
0, n=2m

(m=0,1, 2, ---), we put

For a sequence a, =
D", n=2m+1
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. N G no_ N (=n" 2m+1 o
qu(x)_,,zz;‘(n!)x m:O—{(2m+l)!}qx (0<x<,).

Then, we have

L, [Sin, (0] =3 G =

. D", n=2m
Similarly, for a sequence b, = (m=0,1, 2, ---), we put
0, n=2m+1
Cosq(x)=zw: Z _CED" (0<x<o,).
n=0 (}’l . m=0 (2m)'}q
Then, we have
o0 b 0
Lq |:COSq (x):| = Z(; Sn+1 Z 2m+l

And, From (DE3), we have F,(s)= Ai +f . Therefore  f(x) = ACos,(x)+ BSin (x) is a soluton of (DE3).
ST+

APPENDIX
In (3), a g-analogue of error function is defined by
Erf, (x ; a)—m tE ,(—q) dt (0<a<l),

and we obtain that the equation
e, (X)Erf,(x ;) =D, e (x)

is satisfied. Where a non-integral order differntial operator D,“ is defined by

D f(x)=(1-q)x Z(q - b g £(q ).

That is, we have

€, (VE, (x :) = (l—q)“x“i—(q Do gre, (')

q; 9,
-9 (q" ; q),.x ( ),
_ 1—
@ oL Z( 9)q"x T " (¢"x)

1 v 0 (qt)x; q),
= 1) dt
rq(Ot)I"x (q“t/x; q), W 4,

T )j (x=[gt)*" e,t) d,t

On the other hand, from

0 n

Y ,1 2] © A" T (a+n+1)
L [x"e,(Ax)]= L[ Z

S, OT
we have
L, e, (x)Erf,(x ;a)]= {(1 9)" xaz (fIq q)) ge, (")
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On g-Laplace tansformation (kobachi)

D q), 4 q"T Ja+k+1)
Z(q 2, 2 (K1), 5“7

(1 9 &l (at+k+])&

(q“; q), n(k+1)
s ; (k),s* Z:(61 9,

) i (1-9) (45 q). (g5 ).
“” @ ot @ .- @ g,

1 &1
a+lz_k_s(s 1)

—0 S

a-1 rq (a) 1
We remark that L [x"]=——— and L [e, (s)]= 1 Thus the equation
s

L,[x“"1L,[e,(x)]

Lq [D*aeq(x)] = T (@)

is satisfied.

(Manuscript received Oct. 11,2011)
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