超音波 CT を用いた生体内温度分布の測定に関する シミュレーションによる検討と基礎実験

山下 徹*

Simulation Study and Experiment for Noninvasive Measurement of Temperature Distribution in Excised Tissues by Ultrasonic CT

Tohru Yamashita*

The purpose of this study is to develop a noninvasive method to measure temperature distribution in tissues by using ultrasonic CT system. Comparison of CT algorisms, simulation of CT reconstruction and the experiment for tissue made of two agars were performed, following results were obtained. (1) Shepp-Logan filtered convolution method and AART are recommended as the effective CT algorisms for Ultrasonic CT. (2) Tissue has an optimum size for the distance between ultrasonic transmitter and receiver. (3) Temperature distribution reconstructed from measured arrival time of ultrasonic wave was distributed within the range of those measured directly, though the discontinuity of temperature was shown at a border of mediums.

キーワード:温度計測,超音波 CT Keywords: Temperature measurement, Ultrasonic CT

1. 緒言

様々な癌の治療法の1 つにハイパーサーミアと呼ばれる 温熱療法がある.これは癌細胞が正常な細胞に比べ自己冷 却作用に劣るという特性に着目し、腫瘍部を加熱すること によって癌細胞のみを高温状態に保ち死滅させるという治 療法である.この治療法においては、正常な細胞への影響 を少なくするため、腫瘍部の温度を 42.5 ℃ 程度に維持する ことが重要であることから、精密な体内温度のコントロー ルと体内温度分布の監視が求められる.物体内部の温度分 布測定については、物体に熱電対を直接挿入して測定する 手法が一般的である.しかしながら、この場合、患者の身 体を傷つけ、また腫瘍部に触れた熱電対によって癌の転移 を促す可能性を伴う.また非侵襲的な測定法としては、光 干渉計を用いた光学的測定法があるが、非透明である生体 に対しては適用することができない.以上を背景として, 本研究では、伝播速度に温度依存性を有する超音波を利用 した CT 法によって,身体に対して非侵襲的に温度分布を測 定するシステムの開発を目指している.また、このシステ

 * 機械知能システム工学科 〒866-8501 熊本県八代市平山新町 2627
 Dept. of Mechanical and Intelligent Systems Engineering, 2627 Hirayama, Yatsushiro-shi, Kumamoto, Japan 866-8501 ムはハイパーサーミアだけでなく,超音波が伝播する物体 であれば非接触的に温度分布を測定することが可能であ り,工業上の応用が期待できる.

縄田ら(1)による研究では、物体内の音速分布を加熱前後の 2回で取得し、これらの差より得られた音速差分布に対し て,あらかじめ測定した物体の代表経路における温度と音 速の関係を用いることで音速差分布を加熱前後での温度変 化量分布に変換し、これに非加熱時の温度分布、つまり等 温状態での温度分布を加えることで,温度分布を求めるシ ステムが確立されている.しかしながら、実際の生体への 応用では、発熱により初期温度分布が不等温場であるため に,温度変化量分布は得ることができても正確な温度分布 を得ることができない.また、複雑な組織分布を持つ実際 の生体においては、超音波の透過経路に占める各組織の割 合が経路によって大きく異なるため、代表経路による温度 と音速の関係を用いることは,温度測定に大幅な精度低下 をもたらす.これに対して、MRI など既存の生体投影機器 を用いて得られた組織分布を利用し、かつ物体を構成する 組織毎の温度と音速の関係が既知であれば、測定する物体 中に異種の組織が混在していても, 音速分布および温度分 布の測定が可能である見込みが高い.

また,音速分布の測定精度に大きな影響をもつ CT アルゴ

リズムについては、複数の手法に対して多くの研究者が比 較検討を行なっているが、その多くは X 線 CT や MRI、単 光子放射型断層撮影を対象としたものであり、各画素の絶 対値よりも形状の認識について比較した例が少なくない. その中で、藤井ら⁽²⁾は、超音波 CT での CT アルゴリズムに ついての比較検討を行ない、精度および計算時間から Shep-Logan フィルタを用いた重畳積分法が最も優れてい るとの結論を得た.しかしながら、その後のコンピュータ 技術はめざましい発達を遂げており、改めて比較検討を行 なう余地がある.

そこで本研究では, 超音波 CT での温度分布測定の高度化 を目指して, シミュレーションによる CT アルゴリズムの比 較評価および試料寸法についての検討を行ない, 基礎的実 験として, 音速と温度の関係が異なる 2 種の寒天ゲルで構 成された測定試料の加熱状態における温度分布の測定を行 なったので, 以下に報告する.

2. 音速分布の取得原理

本研究では測定試料内の音速分布を求める際に CT アル ゴリズムを用いている. CT アルゴリズムとは物体のあらゆ る角度における複数の投影データから投影の元になった関 数(原画像)を再構成する計算手法である.

図 1 は、周囲流体中に置かれた測定試料に超音波を透過 させたときに得られる投影データの原理図を示したもので ある. 図中, 超音波伝播経路の一例を区間 AB に示している. x-y 座標系に対し、超音波伝播経路と平行かつ原点を通る軸 を l 軸、それに直交する軸を s 軸とし、x 軸と l 軸のなす角 を θ とする. 空間の各位置における音速の値を c(x,y)とすれ ば、区間 AB における超音波伝播時間 $\tau(s,\theta)$ は、次式に示す ように音速 c(x,y)の逆数を強度とする区間 AB に沿った線積 分として表わされる.

$$\tau(s,\theta) = \int_{AB} \frac{1}{c(x,y)} dl \qquad (1)$$

ただし,式(1)の $\tau(s,\theta)$ には測定試料の強度だけでなく周囲 流体の強度も含まれている.そこで,超音波が周囲流体の みを通過するときの超音波伝播時間を考慮して,両辺から 差し引くと,次式が得られる.式中, D_0 は超音波発信子と 受信子の端子間距離(以後,端子間距離と称す), c_0 は物体の 周囲における音速である.

上式は、測定試料がない場合の超音波伝播時間に対して 超音波伝播経路中に測定試料を設置することによって生じ た超音波伝播時間の変化量に関する式であり、測定試料の 強度のみの投影にあたる.既知である端子間距離 D₀と測定 により得た物体周囲の音速 c₀、サンプリングした全測定経

Fig. 1 Arrival time of ultrasonic wave

路の超音波伝播時間 $\tau(s,\theta)$ により全測定経路に沿った投影が 得られ, CT アルゴリズムを用いることで測定試料内の各位 置における音速 c(x,y)の値を算出することができる⁽³⁾.

CT アルゴリズムは解析的方法と逐次近似法に分類され る. 解析的方法には、2 次元フーリエ変換法(Two dimensional Fourier transform), フィルタ補正逆投影法 (Filtered Back Projection, FBP), 重畳積分法 (Convolution) がある. 2 次元 フーリエ変換法は、投影データの1次元フーリエ変換が原 画像の2次元フーリエ変換に等しいという投影切断面定理 に基づくもので、周波数空間にある投影データの1次元フ ーリエ変換を実空間に再配置し,2次元フーリエ逆変換する ことによって原画像を再構成する方法である.フィルタ補 正逆投影法は、2次元フーリエ変換法と数学的には等価であ るが、投影データの1次元フーリエ変換にフィルタ関数を 乗じて逆投影処理をすることで,実空間へ再配置する際に 生じる粗さの除去を試みた手法である.また,重畳積分法 もフィルタ補正逆投影法と同じ逆投影手法を利用したもの で,フィルタ補正逆投影法が周波数空間でフィルタリング を行なうのに対して,実空間での畳み込み積分によってフ ィルタリングが行なわれる. 原画像を f(x,y), 投影データを $g(s, \theta)$ とすると、重畳積分法は以下の式で表される⁽⁴⁾.

$$f(x,y) = \int_0^{\pi} g(x,y) \otimes h(s) d\theta \qquad (3)$$

ここで,⊗は畳み込み積分を表す.式中の*h(s)*はフィルタ 関数の1次元フーリエ逆変換である.フィルタ関数として は,以下に示す Shepp-Logan フィルタと Ram-Lak フィルタ が良く知られている.

・Shepp-Logan フィルタ

$$h(n\Delta s) = \frac{2}{\pi^2 \Delta s^2 (1 - 4n^2)}$$
(4)

・Ram-Lak フィルタ

$$h(n\Delta s) = \begin{cases} \frac{1}{4\Delta s^2} & n=0\\ 0 & n=2m \ (m=0,1,2,...) & \cdots \cdots (5)\\ -\frac{1}{n^2 \pi^2 \Delta s^2} & n=2m+1 \ (m=0,1,2,...) \end{cases}$$

逐次近似法には、ART (Algebraic Reconstruction Technique) 法, SIRT (Simultaneous Reconstruction Technique)法, ML-EM 法など多くの手法がある.いずれの方法も、仮定した初期 画像をもとにして投影データを作成し、実測で得られた投 影データとの比較から画像を反復修正していく方法である が, ART 法が投影方向毎に画素の修正を行なうのに対して、 SIRT 法や ML-EM 法では、1 つの画素の修正に全投影データ が同時に用いられる. ART 法の 1 つである加法的 ART 法で の各画素の修正は次式により行なわれる.

$$f^{m+1}(x,y) = \max\left(f^m(x,y) + \frac{(g-g^m) \times w_{xy}}{\sum_{s,\theta} w}, 0\right) \quad \dots \dots \dots \dots (6)$$

ここで、w_{xy}は画素の面積に対するビームの通過面積であり、各画素における強度の重みを表す.

解析的方法と逐次近似法については,一般に,計算時間 では解析的手法が優れる一方,投影データに欠損がある場 合の画像再構成では,各画素値を離散データとして取り扱 う逐次近似法が優れていることが知られている.

3. 測定装置

3.1 音速分布の測定装置

図 2 は、本研究で用いる測定装置の概略図を示したもの である.測定装置は、測定試料を設置するための円筒型恒 温槽、超音波発信子および受信子、パルスステージ、ステ ージコントローラ、ユニバーサルカウンタ、パーソナルコ ンピュータから構成される.パーソナルコンピュータ中に はパルサ・レシーバボードと A/D 変換ボードが搭載されて いる.発信子および受信子には外形 10 mm、周波数 1 MHz

Fig. 2 Ultrasonic CT scanning system

のセラミックス製超音波素子を用いた.発信子と受信子は 端子間距離 99 mm でパルスステージに固定され、ステージ コントローラからの信号によって、恒温槽の中央に設置さ れた測定試料を中心として動径方向*s*と角度方向 θ に走査さ れる.発信子をパルサ・レシーバボードに接続することで 超音波パルスが発信され、受信子に到達するまでの伝播時 間がユニバーサルカウンタによって計測される.なお、超 音波伝播時間については、測定機器の制御遅れなどに関す る検定結果にもとづき、次式に示す補正が行なわれる.こ こで、 Δt_c はユニバーサルカウンタでの測定時間、 Δt_a はト リガ信号と発信パルスの位相差補正、 Δt_b はトリガ信号幅補 正、 Δt_c はボードの制御遅れ補正を表す.

超音波伝播時間は、測定試料を中心に配し、動径方向100 mm間を1mm毎、角度方向180°を1.8°毎の計10,000回に ついて測定が行なわれる.得られた伝播時間データをもと にCTアルゴリズムを用いて音速分布を再構成する.なお、 測定試料の加熱は、内部に挿入したシース型電気ヒータの 負荷電圧を調整することにより行なう.

3.2 温度と音速の関係の測定装置

測定試料の温度と音速の関係を調べるための測定装置の 概略図を図3に示す.水で満たされた恒温槽中に測定試料 を超音波発信子と受信子で挟み、3本の熱電対を超音波発信 子近傍,超音波伝播経路中央近傍,超音波受信子近傍に挿 入する.ヒータを用いて水温を設定し,水温と測定試料の 温度が定常状態となったことを確認の上,超音波パルスの 伝播時間を測定し,音速を求める.ヒータの出力を調整す ることで恒温槽内の水温を段階的に上昇させて,約1℃毎 に音速データを取得し,得られた測定試料の音速と温度の 関係から多項式近似式を得る.本研究では、全ての測定試 料および周囲流体についてあらかじめ音速と温度の関係を 測定し,その後CTアルゴリズムにより得られた音速分布に 対して,それぞれの物体における音速と温度の関係式を用

いることで、温度分布を求める.

4. シミュレーションを用いた検討

本研究では, 超音波 CT において重要となる音速分布の再 構成について, 各種の CT アルゴリズムを比較するととも に, 試料寸法が画像再構成に及ぼす影響について検討を行 なった.

表1は、シミュレーションの条件を示したものである. 端子間距離は本研究に用いる音速分布測定装置における 99 mm とし、計測は実験装置と同じく動径方向 100 mm 間を1 mm 毎,角度方向 180°を 1.8°毎の計 10,000 回とした.測定 領域は等温場とし、測定試料は円柱形とした.測定試料の 形状および音速と周囲流体の音速から、全測定経路におけ る伝播時間をコンピュータ上で理論的に計算して投影デー タを作成し、CT アルゴリズムを用いて音速分布の再構成を 行なった. CT アルゴリズムには解析的手法である2次元フ ーリエ変換法および重畳積分法と、逐次近似法の中でもノ イズの小さい系において収束が早いことで知られる AART 法を用いた.なお、通常の AART 法は、式(6)に示すとおり 各画素の重みが必要であるが、本研究では計算の高速化を はかるために各画素の修正を最近傍法により行ない、得ら れた画素の分布に対して隣接する画素との平均化処理を行 なうことで再構成を行なった.なお,重畳積分法は,Ram-Lak フィルタと Shepp-Logan フィルタの2 種類のフィルタ関数に ついて比較を行なった.

図4は、代表的な比較の例として、測定資料寸法が60mm の場合の各CTアルゴリズムによる再構成の結果を、試料中 心を通る断面での音速分布として示したものである. 横軸 は試料中心からの距離を示している. 超音波CTでは、0.5°C 以内の温度測定精度を得るためには、1.0m/s以内の精度で 音速分布を得る必要がある. 図より、Shepp-Loganフィルタ を用いた重畳積分法およびAART法が、試料外縁部で原画 像に対して若干の差異を生じるものの、全体として良好な 再現性を示した.一方、2次元フーリエ変換法によって得ら れた音速値の分布は、試料中心部では原画像よりも大きく、 また外縁部では小さくなり、全体としても他の方法に比べ て再現性は著しく低い.これは、2次元フーリエ変換法で投 影データを極座標から直交座標に再配置する際に、高周波 数成分となる試料境界においてデータが粗になることに起

Distance between transmitter and receiver		99 mm
Sampling number		s: 100 (0.1 mm pitch) $\theta: 100 (1.8 ^{\circ} \text{ pitch})$
Sonic velocity	Tissue	1600 m/s
	Surrounding	1590 m/s
Diameter of tissue		$10 \sim 90 \mathrm{mm}$

因している.また,Ram-Lak フィルタを用いた重畳積分法 は、全体的な再現性は良好である一方、試料境界面におい て高周波数成分による音速値の急激かつ過大なピークが見 られた.なお、藤井ら⁽⁵⁾は逐次近似法として最小二乗法によ り修正を行なうLSIT 法を用い、試料境界面において過大な ピークが現れることを明らかにしているが、本研究で用い たAART 法では、同様の傾向は見られなかった.

以上の結果,超音波 CT の CT アルゴリズムとしては, Shepp-Logan フィルタを用いた重畳積分法とAART法が適し ていると判断される.特に AART 法は,投影データに欠損 がある場合でも比較的良好な再現性を示すという逐次近似 法特有の特徴をもつ.再構成に要する計算時間は,パーソ ナルコンピュータ上で重畳積分法が約2秒であるのに対し, AART 法は約60秒を要し,依然として計算時間に問題を要 するものの,コンピュータ技術の今後のさらなる発展に伴 って,その優位性が増すものと考えられる.なお,本研究 の実験では,計算時間の短い Shepp-Logan フィルタを用いた 重畳積分法を用いた.

図 5 は、試料寸法が画像再構成に及ぼす影響を、試料寸 法に対する復元率として示したものである.ここで復元率 は、試料内における音速値の標準偏差を元に次式にて定義 した.

$$R = 100 - \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{v_i - v_0}{v_0} \times 100\right)^2}{n}} \dots \dots (8)$$

ここで、v_iは復元された音速値、v₀は真の音速値、nは試 料内の音速値のサンプル数である.なお、0.1%の復元率の 差は、温度換算で約1.0°Cの測定誤差に相当する.図より 分かるように、試料寸法の変化に対して復元率は極大値を 示すよう推移し、試料寸法には最適値が存在する.本研究 の端子間距離99 mmに対しては試料直径が70 mmのときに 最も復元率が高く、したがって以降の実験では、測定試料 の直径は約70 mmとした.

Fig. 5 Effect of tissue diameter on reconstruction ratio

5. 異種の組織が混在する物質の温度分布測定

音速の異なる組織が混在する測定試料をグルコース濃度 の異なる寒天ゲルを用いて作成し、本研究の手法により音 速分布を測定し、温度分布を求めた.この際、組織分布が 別途必要であるが、今回は自ら作成した測定試料を用いる ため、組織分布は既知である.寒天ゲルのグルコース濃度 (重量%)はそれぞれ1%および4%とした.図6は各寒天 ゲルについて測定した温度に対する音速の関係を示したも のである.図中には、次式に示す Greenspan⁽⁶⁾による純水に 関する整理式も示している.グルコース濃度1%および4% の寒天ゲルで温度と音速の関係は異なり、それぞれ水に対 して全体的に6m/sおよび9m/s程度の音速差がある.

 $V=1402.736+5.03358T-0.0579506T^{2}$

 $+3.31636 \times 10^{-4} T^3 - 1.45262 \times 10^{-6} T^4$

+3.0449×10⁻⁹ T^5 (V[m/s], T[°C])(9)

図 7 は作成した測定試料の測定断面である.測定試料は 外径が 66 mm, 2 種の寒天ゲルが半分ずつ組み合わさる円柱 形とした.円柱中心部をヒータで加熱し,測定試料表面の 温度変化を監視して定常に近い状態になったことを確認し た後に測定を行なった.なお,得られた温度分布と比較す るため熱電対で温度を測定した位置を図中に黒丸で示す.

図8は,超音波CTによって得られた測定試料内の温度分 布を図7の温度実測点を横切る断面について示したもので ある.図中,熱電対での実測温度は超音波ビーム幅を考慮 して測定断面より深さ方向にビーム幅に相当する±5 mm で 測定し,幅を付して併記している.図より,CT法で得られ た温度分布は実測した温度分布に対して全体的に温度が高 くなるが,周囲の水との境界近傍以外においては実測デー タの温度範囲内で温度をほぼ復元することができた.また, 水と寒天ゲルの境界近傍において得られた温度が実測温度

Fig. 6 Relation between temperature and sonic velocity

Fig. 8 Comparison of temperature with those measured

より低いのは、図4に示すように、重畳積分法では境界付 近の音速が低く再構成される傾向があり、これが起因した ものと考えられる.以上のことからさらなる測定の高精度 化が必要ではあるものの、温度分布の復元は可能であると 言える.なお、2種の寒天ゲルの境界近傍において温度分布 が不連続になる傾向がみられた.これは超音波ビームに有 限の幅があり、超音波の伝播時間がその幅の領域の影響が 平均されて測定されるためと考えられる.そのため音速の 異なる物体の境界近傍では音速の低い側(1%wt.)は音速の 高い側(4%wt.)の影響を受けて実際の音速及び温度よりそ れぞれの復元データが高くなり,音速の高い側(4%wt.)はその逆となる.この影響により境界で温度分布に大きな誤差を生じ,また温度分布が不連続になったと考えられる.

6. 結言

本報告において,得られた結論を以下に示す.

- 超音波 CT を模擬した CT アルゴリズムの比較検討より、
 解析的方法である重畳積分法と逐次近似法である AART
 法が、音速分布の再構成に優れた結果を示した。
- 超音波 CT のシミュレーションの結果より端子間距離に 対する測定試料の大きさに最適値が存在することが明 らかになった.本研究での端子間距離 99 mm においては 70 mm 程度である.
- ・ 異種の組織で構成される測定体での温度分布測定については、音速の異なる2種の寒天ゲルを用いた基礎実験の結果、試料内部の温度分布を実測した温度分布の誤差範囲内でほぼ復元することができたが、境界近傍において温度の不連続性がみられた。

(平成 22 年 9 月 24 日受付)

参考文献

- (1) 縄田豊:「超音波 CT による生体内温度計測に関する基礎的研究」、日本機械学会論文集, Vol.63, No.615 pp255 - 260 (1997).
- (2)藤井丕夫,張興,熊森徹:「超音波 CT による物体内部 温度の非侵襲的測定」,日本機械学会論文集,Vol.61, No.585 pp.300-306 (1995).
- (3) 永井啓之亮:「超音波ホログラフィ」,日刊工業新聞社 (1989)
- (4) 篠原広行,坂口和也,橋本雄幸:「Excel による画像再 構成入門」, 医療科学社 (2007)
- (5)藤井丕夫,張興,熊森徹:「超音波 CT による物体内部 温度の非接触測定」,機能物質科学研究所報告, Vol.7, No.2 pp.181-190 (1993).
- (6) 実吉純一,菊池喜充,能本乙彦:「超音波技術便覧」,日 刊工業新聞社 (1966)